Skip to main content

Carbon Cycle Models: How Strong Are the Constraints?

  • Chapter
Tectonic Uplift and Climate Change

Abstract

In 1982, Walker et al.1 published a landmark paper suggesting that the evolution of the Earth’s climate over 4.5 billion years was controlled by a negative feedback loop involving surface temperature, CO2, and chemical weathering that moderated the strength of the Earth’s “greenhouse effect” over time. As solar luminosity increased over time, surface temperatures on the Earth rose, accelerating the rate of surface chemical weathering reactions (which consumed atmospheric CO2) resulting in a weaker greenhouse—i.e., a negative feedback system for the Earth’s surface temperature, which prevented a runaway greenhouse effect in the face of increasing solar output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). J. Geophys. Res. 86, p. 9976.

    Google Scholar 

  2. Berner, R. A., Lasaga, A. C., and Garrels, R. M. (1983). Am. J. Sci. 283, p. 641.

    Article  Google Scholar 

  3. Raymo, M. E., Ruddiman, W. F., and Froelich, P. N. (1988). Geology 16, p. 649.

    Article  Google Scholar 

  4. Berner, R. A, and Rye, D. M. (1992). Am. J. Sci. 292, p. 136.

    Article  Google Scholar 

  5. Caldeira, K. (1992). Nature 357, p. 578.

    Article  Google Scholar 

  6. Kerrick, D. M., and Caldeira, K. (1993). Chem. Geol. 108, p. 201.

    Article  Google Scholar 

  7. Raymo, M. E., and Ruddiman, W. F. (1992). Nature 359, p. 117.

    Article  Google Scholar 

  8. Raymo, M. E. (1994). Paleoceanography 9, p. 399.

    Article  Google Scholar 

  9. François, L. M., and Walker, J. C. G. (1992). Am. J. Sci. 292, p. 81.

    Article  Google Scholar 

  10. Delaney, M. L., and Filippelli, G. M. (1994). Paleoceanography 9, p. 513.

    Article  Google Scholar 

  11. Lasaga, A. C., Berner, R. A., and Garrels, R. M. (1985). In: The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present (E. T. Sundquist and W. S. Broecker, eds.), p. 397. Geophysics Monograph 32, Merical Geological Union, Washington, D.C.

    Google Scholar 

  12. Shackleton, N. J. (1987). In: Marine Petroleum Source Rocks (J. Brooks and A. J. Fleet, eds.), pp. 423 434. Special Publication of Geological Society of London 26.

    Google Scholar 

  13. Derry, L. A., and France-Lanord, C. (1996). Paleoceanography 11, p. 267.

    Article  Google Scholar 

  14. Compton, J. S., and Mallinson, D. J. (1996). Paleoceanography 11, p. 431.

    Article  Google Scholar 

  15. Broecker, W. S. (1974). J. Geophys. Res. 75, p. 3553.

    Article  Google Scholar 

  16. Richter, F. M., Rowley, D. B., and DePaolo, D. J. (1992). Earth Planet. Sci. Lett. 109, p. 11.

    Article  Google Scholar 

  17. Wilkenson, B. H., and Algeo, T. J. (1989). Am. J. Sci. 289, p. 1158.

    Article  Google Scholar 

  18. Garrels, R. M., and Lerman, A. (1984). Am. J. Sci. 284, p. 989.

    Article  Google Scholar 

  19. Craig, H. (1953). Geochim. Cosmochim. Aeta 3, p. 53.

    Article  Google Scholar 

  20. Garrels, R. M., and Perry, E. A. (1974). In: The Sea (E. D. Goldberg, ed.), pp. 303–316. John Wiley, New York.

    Google Scholar 

  21. Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W., and Baker, E. W. (1989). Am. J. Sci. 289, p. 436.

    Article  Google Scholar 

  22. Degens, E. T. (1969). In: Organic Geochemistry Methods and Results (G. Eglinton and M. T. J. Murphy, eds.), pp. 304–329. Springer-Verlag, New York.

    Google Scholar 

  23. Lindh, T. B. (1983). Temporal variations in 13C and 34S and global sedimentation during the Phanerozoic, M.S. thesis, University of Miami, p. 98.

    Google Scholar 

  24. Lewan, M. D. (1986). Geochim. Cosmochim. Acta 50, p. 1583.

    Article  Google Scholar 

  25. Keil, R. (1994). Nature 370, p. 549.

    Article  Google Scholar 

  26. Delaney, M. L., and Boyle, E. A. (1988). Paleoceanography 3, p. 137.

    Article  Google Scholar 

  27. Ronov, A. B. (1980). In: The Earth’s Sedimentary Shell: Quantitative Patterns of Its Structure, Compositions, and Evolution (A. A. Yaroshevskii, ed.), p. 80. Nauka, Moscow.

    Google Scholar 

  28. Budyko, M. I., Ronov, A. B., and Yanshin, A. L. (1987). History of the Earth’s Atmosphere, 139 pp. Springer-Verlag, Berlin.

    Book  Google Scholar 

  29. Lasaga, A. (1989). Am. J. Sci. 289, p. 411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raymo, M.E. (1997). Carbon Cycle Models: How Strong Are the Constraints?. In: Ruddiman, W.F. (eds) Tectonic Uplift and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5935-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5935-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7719-1

  • Online ISBN: 978-1-4615-5935-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics