Skip to main content

Production and Analysis of Transgenic Mice Containing Yeast Artificial Chromosomes

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 19))

Abstract

Until the advent of transgenic mouse technology, studies of mammalian gene expression and regulation were largely limited to cell lines transfected with constructs containing limited genetic information. Developmental studies were not possible since cell lines are generally locked into one ontogenic stage. Transgenic mice provided two improvements and facilitated the study of gene function in development and disease. First, transgene expression in mice allowed assessment of phenotypes. Second, gene expression could be studied throughout development and tissue-specific regulatory elements could be analyzed. However, expression of transgenes was erratic due to position effects and copy number-independent expression. In many instances these problems were due to the nature of the transgene constructs, which typically were limited in their size due to constraints on how large a DNA fragment could be isolated without degradation and introduced into the mouse. Thus, deletion of cis sequences was necessary during the design of transgenes to be injected. Many large genes with exons spanning several hundred kilobases or multigenic loci could not be used as transgenes. cDNAs were substituted for large genes or individual genes from a multigene cluster were utilized in place of an entire locus. However, expression from these constructs was subject to the effects of surrounding chromatin into which they were integrated. Some improvement resulted when other cis-acting elements, such as enhancers, introns or polyadenylation signals were included. These additional sequences assisted studies in which the main goal was to express the transgene, but these truncated constructs lacked their natural regulatory elements and thus developmental studies were not necessarily indicative of how the native gene might be regulated. Ideally, a system in which large genes or loci could be successfully used in the generation of transgenic mice might improve the utility of transgenic studies. Inclusion of distal regulatory elements within the native locus might validate developmental studies and insulate the construct from position effects. With this in mind several lab groups successfully implemented the use of large DNA constructs, in particular yeast artificial chromosomes (YACs), as transgenes (121).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choi, T.K., Hollenbach, P.W., Pearson, B.E., Ueda, R.M., Weddell, G.N., Kurahara, C.G., Woodhouse, C.S., Kay, R.M. and Loring, J.F. (1993) Nature Genet. 4, 117–123.

    Article  PubMed  CAS  Google Scholar 

  2. Davies, N.P., Rosewell, I.R., Richardson, J.C., Cook, G.P., Neuberger, M.S., Brownstein, B.H., Norris, M.L. and Brüggemann, M. (1993) Biotechnology 11, 911–914.

    Article  PubMed  CAS  Google Scholar 

  3. Gaensler, K.M.L., Kitamura, M. and Kan, Y.W. (1993) Proc. Nat. Acad. Sci. U.S.A. 90, 11381–11385.

    Article  CAS  Google Scholar 

  4. Jakobovits, A., Moore, A.L., Green, L.L., Vergara, G.J., Maynard-Carrie, C.E., Austin, H.A. and Klapholz, S. (1993) Nature 362, 255–258.

    Article  PubMed  CAS  Google Scholar 

  5. Lamb, B.T., Sisodia, S.S., Lawler, A.M., Slunt, H.H., Kitt, CA., Kearns, W.G., Pearson, P.L., Price, D.L. and Gearhart, J.D. (1993) Nature Genet. 5, 22–30.

    Article  PubMed  CAS  Google Scholar 

  6. Pearson, B.E. and Choi, T.K. (1993) Proc. Nat. Acad. Sci. U.S.A. 90, 10578–10582.

    Article  CAS  Google Scholar 

  7. Peterson, K.R., Clegg, C.H., Huxley, C., Josephson, B.M., Haugen, H.S., Furukawa, T. and Stamatoyannopoulos, G. (1993) Proc. Nat. Acad. Sci. U.S.A. 90, 7593–7597.

    Article  CAS  Google Scholar 

  8. Schedl, A., Montoliu, L., Kelsey, G. and Schutz, G. (1993) Nature 362, 258–261.

    Article  PubMed  CAS  Google Scholar 

  9. Strauss, W.M., Dausman, J., Beard, C., Johnson, C., Lawrence, J.B. and Jaenisch, R. (1993) Science 259, 1904–1907.

    Article  PubMed  CAS  Google Scholar 

  10. Green, L.L., Hardy, M.C., Maynard-Currie, C.E., Tsuda, H., Louie, D.M., Mcndez, M.J., Abderrahim, H., Noguchi, M., Smith, D.H., Zeng, David, N.E., Sasai, H., Garza, D., Brenner, D.G., Hales, J.F., McGuinness, R.P., Capon, D. J., Klapholz, S. and Jakobovits, A. (1994) Nature Genet. 7, 13–21.

    Article  PubMed  CAS  Google Scholar 

  11. Bungert, J., Dave, U., Lim, K.-C, Lieuw, K.H., Shavit, J.A., Liu, Q. and Engel, J.D. (1995) Genes Dev. 9, 3083–3096.

    Article  PubMed  CAS  Google Scholar 

  12. Frazer, K.A., Narla, G., Zhang, J.L. and Rubin E.M. (1995) Nature Genet. 9, 424–431.

    Article  PubMed  CAS  Google Scholar 

  13. McCormick, S.P.A., Ng, J.K., Taylor, S., Flynn, L.M., Hammer, R.E. and Young, S.G. (1995) Proc. Nat. Acad. Sci. U.S.A. 92, 10147–10151.

    Article  CAS  Google Scholar 

  14. Peterson, K.R., Li, Q., Clegg, C.H., Furukawa, T., Navas, P.A., Norton, E.J., Kimbrough, T.G. and Stamatoyannopoulos, G. (1995) Proc. Nat. Acad. Sci. U.S.A. 92, 5655–5659.

    Article  CAS  Google Scholar 

  15. Smith, D.J., Zhu, Y., Zhang, J., Cheng, J.-F. and Rubin, E.M. (1995) Genomics 27, 425–434.

    Article  PubMed  CAS  Google Scholar 

  16. Heard, E., Kress, C., Mongelard, F., Courtier, B., Rougeulle, C., Ashworth, A., Vourc’h, C., Babinet, C. and Avner, P. (1996) Human Mol. Genet. 5, 441–450.

    Article  CAS  Google Scholar 

  17. Huxley, C., Passage, E., Manson, A., Putzu, G., Figarella-Branger, D., Pellissier, J.F. and Fontés, M. (1996) Human Mol. Genet. 5, 563–569.

    Article  CAS  Google Scholar 

  18. Lee, J.T., Strauss, W.M., Dausman, J.A. and Jaenisch, R. (1996) Cell 83, 83–94.

    Article  Google Scholar 

  19. Matsuura, S., Episkopou, V., Hamvas, R. and Brown, S.D.M. (1996) Human Mol. Genet. 5, 451–459.

    Article  CAS  Google Scholar 

  20. Peterson, K.R., Clegg, C.H., Navas, P.A., Norton, E.J., Kimbrough, T.G. and Stamatoyannopoulos, G. (1996) Proc. Nat. Acad. Sci. U.S.A. 93, 6605–6609.

    Article  CAS  Google Scholar 

  21. Schedl, A., Ross, A., Lee, M., Engelkamp, D., Rashbass, P., Van Heyningen, V. and Hastie, N.D. (1996) Cell 86, 71–82.

    Article  PubMed  CAS  Google Scholar 

  22. Steinberg, N. (1990) Proc. Nat. Acad. Sci. U.S.A. 87, 103–107.

    Article  Google Scholar 

  23. Ioannou, P.A., Amemiya, C.T., Garnes, J., Kroisel, P.M., Shizuyu, H., Chen, C., Batzer, M.A. and de Jong, P.J. (1994) Nature Genet. 6, 84–89.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, U.-J., Shizuyu, H., de Jong, P.J., Birren, B. and Simon, M.I. (1992) Nucl. Acids Res. 20, 1083–1085.

    Article  PubMed  CAS  Google Scholar 

  25. Shizuyu, H., Birren, B., Kim, U.-J., Mancino, V., Slepak, T., Tachiiri, Y. and Simon, M. (1992) Proc. Nat. Acad. Sci. U.S.A. 89, 8794–8797.

    Article  Google Scholar 

  26. Burke, D.T., Carle, G.F. and Olson, M.V. (1987) Science 236, 806–812.

    Article  PubMed  CAS  Google Scholar 

  27. Rothstein, R. (1995) in Guide to Yeast Genetics and Molecular Biology (Guthrie, C.and Fink, G.R., eds.), pp. 281–301, Academic Press, San Diego, CA.

    Google Scholar 

  28. Duff, K. and Huxley, C. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 187–198, Humana Press, Totowa, NJ.

    Google Scholar 

  29. Huxley, C. and Gnirke, A. (1994) in YAC Libraries, A User’s Guide (Nelson, D.L. and Brownstein, B.H., eds.), pp. 143–163, W. H. Freeman and Co., Salt Lake City, UT.

    Google Scholar 

  30. Huxley, C. (1994) in Genetic Engineering, Vol. 16 (Setlow, J.K., ed.), pp. 65–91, Plenum Press, New York, NY.

    Google Scholar 

  31. Lamb, B.T. and Gearhart, J.D. (1995) Curr. Opin. Genet. Dev. 5, 342–348.

    Article  PubMed  CAS  Google Scholar 

  32. Davies, N.P. and Huxley, C. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 281–292, Humana Press, Totowa, NJ.

    Google Scholar 

  33. Schedl, A., Grimes, B. and Montoliu, L. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 293–306, Humana Press, Totowa, NJ.

    Google Scholar 

  34. Strauss, W.M. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 307–327, Humana Press, Totowa, NJ.

    Google Scholar 

  35. Smith, D.R. (1994) in YAC Libraries, A User’s Guide (Nelson, D.L. and Brownstein, B.H., eds.), pp. 1–31, W. H. Freeman and Co.

    Google Scholar 

  36. Ling, L.L., Smith, D.R. and Moir, D.T. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 231–237, Humana Press, Totowa, NJ.

    Google Scholar 

  37. McKee-Johnson, J.W. and Reeves, R.H. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 167–186, Humana Press, Totowa, NJ.

    Google Scholar 

  38. Fairhead, C., Heard, E., Arnaud, D., Avner, P. and Dujon, B. (1995) Nucl. Acids Res. 23, 4011–4012.

    Article  PubMed  CAS  Google Scholar 

  39. Barton, M.C., Hoekstra, M.F. and Emerson, B.M. (1990) Nucleic Acids Res. 18, 7349–7355.

    Article  PubMed  CAS  Google Scholar 

  40. Duff, K., McGuigan, A., Huxley, C., Schulz, F. and Hardy, J. (1994) Gene Therapy 1, 70–75.

    PubMed  CAS  Google Scholar 

  41. McCormick, S.P.A., Peterson, K.R., Hammer, R.E., Clegg, C.H. and Young, S.G. (1996) Trends Cardiovasc. Med. 6, 16–24.

    Article  PubMed  CAS  Google Scholar 

  42. Peterson, K.R., Clegg, C.H., Li, Q., Navas, P.A., Norton, E.J., Leppig, K.A. and Stamatoyannopoulos, G.(1995) in Hemoglobin Switching, (Stamatoyannopoulos, G., ed.), pp. 45–58, Intercept, Ltd., Andover, UK.

    Google Scholar 

  43. Ausubet, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K., eds. (1996) in Current Protocols in Molecular Biology, pp. 13.2.4–13.2.12, Greene Publishing Associates and John Wiley and Sons, New York, NY.

    Google Scholar 

  44. Hugerat, Y., Spencer, F., Zenvirth, D. and Simchen, G. (1994) Genomics 22, 108–117.

    Article  PubMed  CAS  Google Scholar 

  45. Spencer, F., Hugerat, Y., Simchen, G., Hurko, O., Connelly, C. and Hieter, P. (1994) Genomics 22, 118–126.

    Article  PubMed  CAS  Google Scholar 

  46. Spencer, F. and Simchen, G. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 239–252, Humana Press, Totowa, NJ.

    Google Scholar 

  47. Hamer, L., Johnston, M. and Green, E.D. (1995) Proc. Nat. Acad. Sci. U.S.A. 92, 11706–11710.

    Article  CAS  Google Scholar 

  48. Gnirke, A., Huxley, C., Peterson, K. and Olson, M.V. (1993) Genomics 15, 659–667.

    Article  PubMed  CAS  Google Scholar 

  49. Couto, L.B., Spangler, E.A. and Rubin, E.M. (1989) Nucl. Acids Res. 17, 8010.

    Google Scholar 

  50. Schedl, A., Larin, Z., Montoliu, L., Thies, E., Kelsey, G., Lehrach, H. and Schütz, G. (1993) Nucl. Acids Res. 21, 4783–4787.

    Article  PubMed  CAS  Google Scholar 

  51. Montoliu, L., Schedl, A., Kelsey, G., Lichter, P., Larin, Z., Lehrach, H. and Schütz, G. (1993) Cold Spring Harbor Symp. Quant. Biol. 58, 55–62.

    Article  PubMed  CAS  Google Scholar 

  52. Maule, J.C., Porteous, D.J. and Brookes, A.J. (1994) Nucl. Acids Res. 22, 3245–3246.

    Article  PubMed  CAS  Google Scholar 

  53. Nishio, H., Takeshima, Y., Narita, N., Yanagawa, H., Suzuki, Y., Ishikawa, Y., Minami, R., Nakamura, H. and Matsuo, M. (1994) J. Clin. Invest. 94, 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  54. Nobile, C., Galvagni, F., Marchi, J., Roberts, R. and Vitiello, L. (1995) Genomics 28, 97–100.

    Article  PubMed  CAS  Google Scholar 

  55. Gaensler, K.M.L., Burmeister, M., Brownstein, B.H., Taillon-Miller, P. and Myers, R.M. (1991) Genomics 10, 976–984.

    Article  PubMed  CAS  Google Scholar 

  56. Ferrin, L.J. and Camerini-Otero, R.D. (1991) Science 254, 1494–1497.

    Article  PubMed  CAS  Google Scholar 

  57. Iadonato, S.P. and Gnirke, A. (1996) in Methods in Molecular Biology, Vol. 54: YAC Protocols (Markie, D., ed.), pp. 75–85, Humana Press, Totowa, NJ.

    Google Scholar 

  58. Schedl, A., Beermann, F., Thies, E., Montoliu, L., Kelsey, G. and Schütz, G. (1992) Nucl. Acids Res. 20, 3073–3077.

    Article  PubMed  CAS  Google Scholar 

  59. Beermann, F., Ruppert, S., Hummler, E., Bosch, F.X., Müller, G., Rüther, U. and Schütz, G. (1990) EMBO J. 9, 2819–2826.

    PubMed  CAS  Google Scholar 

  60. Tuan, D., Solomon, W., Li, Q. and London, I. (1985) Proc. Nat. Acad. Sci. U.S.A. 82, 6384–6388.

    Article  CAS  Google Scholar 

  61. Forrester, W.C., Thompson, C., Elder, J.T. and Groudine, M. (1986) Proc. Nat. Acad. Sci. U.S.A. 83, 1359–1363.

    Article  CAS  Google Scholar 

  62. Grosveld, F., Blom Van Assendelft, G., Greaves, D. and Kollias, G. (1987) Cell 51, 975–985.

    Article  PubMed  CAS  Google Scholar 

  63. Forrester, W.C., Takegawa, S., Papayannopoulou, T., Stamatoyannopoulos, G. and Groudine, M. (1987) Nucl. Acids Res. 15, 10159–10177.

    Article  PubMed  CAS  Google Scholar 

  64. Stamatoyannopoulos, G. and Nienhuis, A.W. (1994) in Molecular Basis of Blood Diseases, 2nd ed. (Stamatoyannopoulos, G., Nienhuis, A.W., Majerus P., Varmus H, eds.), pp. 107–155, W.B. Saunders. Chicago, IL.

    Google Scholar 

  65. Fishwild, D.M., O’Donnell, S.L., Bengoechea, T., Hudson, D.V., Harding, F., Bernhard, S.L., Jones, D., Kay, R.M., Higgins, K.M., Schramm, S.R. and Lonberg, N. (1996) Nature Biotech. 14, 845–851.

    Article  CAS  Google Scholar 

  66. Chance, P.F. and Fischbeck, K.H. (1994) Hum. Mol. Genet. 3, 1503–1507.

    Article  PubMed  CAS  Google Scholar 

  67. Glaser, T., Walton, D.S. and Maas, R.L. (1992) Nature Genet. 2, 232–239.

    Article  PubMed  CAS  Google Scholar 

  68. Jordan, T., Hanson, I., Zaletayev, D., Hodgson, S., Presser, J., Seawright, A., Hastie, N. and Van Heyningen, V. (1992) Nature Genet. 1, 328–332.

    Article  PubMed  CAS  Google Scholar 

  69. Noll, M. (1993) Curr. Opin. Genet. Dev. 3, 595–605.

    Article  PubMed  CAS  Google Scholar 

  70. Hill, R.E., Favor, J., Hogan, B.L., Ton, C.C., Saunders, G.F., Hanson, I.M., Presser, J., Jordan, T., Hastie, N.D. and Van Heyningen, V. (1991) Nature 354, 522–525.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peterson, K.R. (1997). Production and Analysis of Transgenic Mice Containing Yeast Artificial Chromosomes. In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5925-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5925-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7717-7

  • Online ISBN: 978-1-4615-5925-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics