Skip to main content

Quantum Zeno Effect and “Domination” of the Temporal Evolution of Quantum Systems

  • Chapter
Book cover Quantum Communication, Computing, and Measurement
  • 1196 Accesses

Abstract

The temporal behavior of quantum mechanical systems is analyzed and compared to the exponential decay law. The notion of quantum Zeno effect is discussed and a recent experimental test is critically reviewed: The presence of a subtle repopulation effect requires a reinterpretation of the experimental results. A new experiment is proposed, in which the lifetime of an unstable atom is extended by illuminating it with an intense and suitable EM field. This is a purely dynamical effect and is related to the notion of “dominated” evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Gamow, Z. Phys. 51. (1928) 204.

    Article  ADS  MATH  Google Scholar 

  2. V. Weisskopf and E.P. Wigner, Z. Phys. 63 (1930) 54

    Article  ADS  MATH  Google Scholar 

  3. V. Weisskopf and E.P. Wigner, Z. Phys. 65 (1930) 18.

    Article  ADS  MATH  Google Scholar 

  4. G. Breit and E.P. Wigner, Phys. Rev. 49 (1936) 519.

    Article  ADS  MATH  Google Scholar 

  5. L. Mandelstam and I. Tamm, J. Phys. 9 (1945) 249.

    MathSciNet  Google Scholar 

  6. V. Fock and N. Krylov, J. Phys. 11 (1947) 112.

    MathSciNet  Google Scholar 

  7. E.J. Hellund, Phys. Rev. 89 (1953) 919.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Namiki and N. Mugibayashi, Prog. Theor. Phys. 10 (1953) 474.

    Article  ADS  MATH  Google Scholar 

  9. L.A. Khalfin, Dokl. Acad. Nauk USSR 115 (1957) 277

    Google Scholar 

  10. L.A. Khalfin, [Soy. Phys. Dokl. 2 (1957) 340]

    ADS  MATH  Google Scholar 

  11. L.A. Khalfin, Zh. Eksp. Teor. Fiz. 33 (1958) 1371

    Google Scholar 

  12. L.A. Khalfin, [Sov. Phys. JETP 6 (1958) 1053].

    ADS  MATH  Google Scholar 

  13. R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain (American Mathematical Society Colloquium Publications Vol. XIX, New York, 1934).

    Google Scholar 

  14. A. Beskow and J. Nilsson, Arkiv für Fysik 34 (1967) 561.

    Google Scholar 

  15. L.A. Khalfin, Zh. Eksp. Teor. Fiz. Pis. Red. 8 (1968) 106

    Google Scholar 

  16. L.A. Khalfin, [JETP Letters 8 (1968) 65]

    ADS  Google Scholar 

  17. L.A. Khalfin, Phys. Lett. 112B (1982) 223

    ADS  Google Scholar 

  18. L.A. Khalfin, Usp. Fiz. Nauk. 160 (1990) 185

    Article  Google Scholar 

  19. L.A. Khalfin, [Sov. Phys. Usp. 33 (1990) 10].

    Article  Google Scholar 

  20. L. Fonda, G. C. Ghirardi, A. Rimini and T. Weber, Nuovo Cim. A15 (1973) 689

    Article  ADS  Google Scholar 

  21. L. Fonda, G. C. Ghirardi, A. Rimini and T. Weber A18 (1973) 805

    Article  ADS  Google Scholar 

  22. A. DeGasperis, L. Fonda and G. C. Ghirardi, Nuovo Cim. A21 (1974) 471.

    Article  ADS  Google Scholar 

  23. B. Misra and E.C.G. Sudarshan, J. Math. Phys. 18 (1977) 756.

    Article  MathSciNet  ADS  Google Scholar 

  24. J. von Neumann, Die Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932), p. 195

    Google Scholar 

  25. J. von Neumann, [English translation: Mathematical Foundations of Quantum Mechanics, translated by E.T. Beyer (Princeton University Press, Princeton, 1955) p. 366].

    Google Scholar 

  26. A. Peres, Am. J. Phys. 48 (1980) 931.

    Article  MathSciNet  ADS  Google Scholar 

  27. L. Fonda, G. C. Ghirardi and A. Rimini, Rep. Prog. Phys. 41 (1978) 587

    Article  ADS  Google Scholar 

  28. G-C. Cho, H. Kasari and Y. Yamaguchi, Prog. Theor. Phys. 90 (1993) 803.

    Article  ADS  Google Scholar 

  29. H. Nakazato, M. Namiki and S. Pascazio, Int. J. Mod. Phys. B10 (1996) 247.

    ADS  Google Scholar 

  30. H. Nakazato, M. Namiki, S. Pascazio and H. Rauch, Phys. Lett. A199 (1995) 27.

    ADS  Google Scholar 

  31. E. Fermi, Nuclear Physics (Univ. Chicago, Chicago, 1950) pp. 136, 148

    ADS  Google Scholar 

  32. E. Fermi, See also Notes on Quantum Mechanics. A Course Given at the University of Chicago in 1954, ed. E. Segré (Univ. Chicago, Chicago, 1960) Lec. 23

    Google Scholar 

  33. E. Fermi, also Rev. Mod. Phys. 4 (1932) 87.

    Article  ADS  Google Scholar 

  34. L.S. Schulman, Proc. of the Adriatico Research Conf. on “Tunnelling and its Implications,” ed. D. Mugnai et al. (World Sci., Singapore, 1996).

    Google Scholar 

  35. A. Peres, Ann. Phys. 129 (1980) 33.

    Article  MathSciNet  ADS  Google Scholar 

  36. L.S. Schulman, A. Ranfagni and D. Mugnai, Phys. Scr. 49 (1994) 536.

    Article  ADS  Google Scholar 

  37. R.J. Cook, Phys. Scr. T21 (1988) 49.

    Article  ADS  Google Scholar 

  38. W.H. Itano, D.J. Heinzen, J.J. Bollinger and D.J. Wineland, Phys. Rev. A41 (1990) 2295.

    ADS  Google Scholar 

  39. T. Petrosky, S. Tasaki and I. Prigogine, Phys. Lett. A151 (1990) 109

    MathSciNet  ADS  Google Scholar 

  40. T. Petrosky, S. Tasaki and I. Prigogine Physica A170 (1991) 306.

    MathSciNet  ADS  Google Scholar 

  41. A. Peres and A. Ron, Phys. Rev. A42 (1990) 5720

    ADS  Google Scholar 

  42. L. E. Ballentine, Phys. Rev. A43 (1991) 5165

    ADS  Google Scholar 

  43. W. H. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A43 (1991) 5168

    ADS  Google Scholar 

  44. V. Frerichs and A. Schenzle, in Foundations of Quantum Mechanics,T. D. Black, M. M. Nieto, H. S. Pilloff, M. O. Scully and R. M. Sinclair, eds., World Scientific, Singapore (1992)

    Google Scholar 

  45. S. Inagaki, M. Namiki and T. Tajiri, Phys. Lett. A166 (1992) 5

    ADS  Google Scholar 

  46. D. Home and M. A. B. Whitaker, J. Phys. A25 (1992) 657

    ADS  Google Scholar 

  47. D. Home and M. A. B. Whitaker, Phys. Lett. A173 (1993) 327

    ADS  Google Scholar 

  48. R. Onofrio, C. Presilla and U Tambini, Phys. Lett. A183 (1993) 135

    ADS  Google Scholar 

  49. Ph. Blanchard and A. Jadczyk, Phys. Lett. A183 (1993) 272

    MathSciNet  ADS  Google Scholar 

  50. T. P. Altenmuller and A. Schenzle, Phys. Rev. A 49 (1994) 2016

    Article  ADS  Google Scholar 

  51. M. Berry, in Fundamental Problems in Quantum Theory, eds., D. M. Greenberger and A. Zeilinger (Ann. N.Y. Acad. Sci. Vol.755, New York, 1995), p. 303

    Google Scholar 

  52. A. Beige and G. Hegerfeldt, Phys. Rev. A53 (1996) 53.

    ADS  Google Scholar 

  53. S. Pascazio, M. Namiki, G. Badurek and H. Rauch, Phys. Lett. A179 (1993) 155

    ADS  Google Scholar 

  54. S. Pascazio and M. Namiki, Phys. Rev. A50 (1994) 4582.

    MathSciNet  ADS  Google Scholar 

  55. H. Nakazato, M. Namiki, S. Pascazio, and H. Rauch, Phys. Lett. A217 (1996) 203.

    ADS  Google Scholar 

  56. E. Mihokova, S. Pascazio, and L.S. Schulman, “Hindered decay: Quantum Zeno effect through electromagnetic field domination,” preprint BA-TH/96–242.

    Google Scholar 

  57. For a review, see Quantum Theory and Measurement,eds. J.A. Wheeler and W.H. Zurek (Princeton University Press, 1983)

    Google Scholar 

  58. P. Busch, P.J. Lahti and P. Mittelstaedt, The quantum theory of measurement (Springer Verlag, Berlin, 1991)

    Google Scholar 

  59. M. Namiki and S. Pascazio, Phys. Rep. 232 (1993) 301.

    Article  MathSciNet  ADS  Google Scholar 

  60. B. Gaveau and L. S. Schulman, J. Stat. Phys. 58 (1990) 1209

    Article  MathSciNet  ADS  Google Scholar 

  61. B. Gaveau and L. S. Schulman, J. Phys. A 28 (1995) 7359.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. E.P. Wigner, Am. J. Phys. 31, 6 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pascazio, S. (1997). Quantum Zeno Effect and “Domination” of the Temporal Evolution of Quantum Systems. In: Hirota, O., Holevo, A.S., Caves, C.M. (eds) Quantum Communication, Computing, and Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5923-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5923-8_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7716-0

  • Online ISBN: 978-1-4615-5923-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics