Skip to main content

Abstract

Quantum error correction can be performed fault-tolerantly This allows to store a quantum state intact (with arbitrary small error probability) for arbitrary long time at a constant decoherence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Shor, “Algorithms for quantum computation: discrete log and factoring”, Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994), p. 124.

    Google Scholar 

  2. P. W. Shor, “Scheme for reducing decoherence in quantum memory,” Phys. Rev. A 52 2493–2496 (1995).

    ADS  Google Scholar 

  3. A. M. Steane, “Multiple particle interference and quantum error correction”, LANL e-print quant-ph/9601029, http://xxx.lanl.gov (submitted to Proc. Roy. Soc. London A).

  4. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76 722 (1996).

    Article  ADS  Google Scholar 

  5. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist”, LANL e-print quant-ph/9512032, http://xxx.lanl.gov (to appear in Phys. Rev. A).

  6. R. Laflamme, C. Miguel, J. P. Paz,and W. H. Zurek, “Perfect quantum error correction code,” LANL e-print quant-ph/9602019, http://xxx.lanl.gov

  7. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, “Mixed state entanglement and quantum error-correcting codes”, LANL e-print quantph/9604024, http://xxx.lanl.gov

  8. A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum error correction and orthogonal geometry”, LANL e-print quant-ph/9605005, http://xxx.lanl.gov

  9. P. W. Shor, “Fault-tolerant quantum computation”, LANL e-print quantph/9605011, http://xxx.lanl.gov

  10. F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-Correcting Codes”, North-Holland, Amsterdam (1977).

    MATH  Google Scholar 

  11. A. Yu. Kitaev, “Quantum computing: algorithms and error correction”, Russian Mathematical Surveys, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kitaev, A.Y. (1997). Quantum Error Correction with Imperfect Gates. In: Hirota, O., Holevo, A.S., Caves, C.M. (eds) Quantum Communication, Computing, and Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5923-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5923-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7716-0

  • Online ISBN: 978-1-4615-5923-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics