Skip to main content

Data Management for Ligand-Based Drug Design

  • Chapter
  • 113 Accesses

Abstract

Developing a new drug is a cost- and time-consuming process. Rational drug design, i.e. the use of comptuational methods for finding or constructing new drugs, is expected to become an important factor in reducing these costs. We present database-oriented methods that support rational drug design by targetting on the processing of the explosively growing information that becomes available from biomolecular methods, in particular genome research. This information opens the way for new, structure-oriented methods in the search of drugs. The article addresses the biological expert who is interested in the application of database management approaches for domain specific information systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberer, K., Fischer, G.: Semantic Query Optimization for Methods in Object_Oriented Database Systems. International Conference on Data Engineering, March 1995, Taipei, Taiwan.

    Google Scholar 

  2. Altschul, S.F., Gish, W, Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol., 215, p 403–410, 1990

    PubMed  CAS  Google Scholar 

  3. Bairoch, A., Boeckmann, B.: The SWISS_PROT Protein Sequence Data Bank: Nucleic Acids Res., 19 (Sequences Suppl.), p 2247–2249, 1991.

    PubMed  CAS  Google Scholar 

  4. Barker W.C., George D.G., Hunt L.T., Garavelli J.S.: The PIR protein sequence database. Nucleic Acids Res., 19 (Sequences Suppl.), p 2231–2236, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Benson: “GenBank”, Nucleic Acids Res. 24, p 1–5, 1996.

    Google Scholar 

  6. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F. Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasuni, T.: The Protein Data Bank: a computer based archival file for macromolecular structures. J. Mol. Biol. 112, p 535–542, 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Cattell, R. G. G. (Ed.): Object Databases: The ODMG_93 Standard. Release 1.1, Morgan Kaufmann, San Francisco, 1994.

    Google Scholar 

  8. Daylight User Manual, Daylight Chemical Information System Inc., Irvine, CA 92715.

    Google Scholar 

  9. Durbin, R., Thierry-Mieg, J.: The ACEDB Genome Database, WWW page, http://probe.nalusda.gov: 8000/acedocs/dkfz.html.

    Google Scholar 

  10. Etzold, T., Argos, P.: SRS an indexing and retrieval tool for flat file data libraries, Comput. Appl. Biosci. 9, p 49–57, 1993.

    PubMed  CAS  Google Scholar 

  11. Fayyad, Usama M., Eds., Advances in knowledge discovery and data mining, Menlo Park, Calif., AAAI PressCambridge, Mass., London, MIT Press, 1996.

    Google Scholar 

  12. Graefe, G.: Volcano - An Extensible and Parallel Query Evaluation System, IEEE Transactions on Knowledge and Data Engineering. Vol. 6, No. 1, p 120–135, Feb 1994.

    Article  Google Scholar 

  13. Hemmje, M.: LyberWorld - A 3D Graphical User Interface for Fulltext Retrieval. In: Proceedings of CHI ‘95, Video Summaries, May 1995.

    Google Scholar 

  14. Hendlich, M., Rippmann, F., Barnickel, G., to be published.

    Google Scholar 

  15. Hendlich, M., Rippmann, F., Barnickel, G., Automatic Assignment of Atom and Bond Types for Protein Ligands in the Brookhaven Protein Database, submitted.

    Google Scholar 

  16. Kabsch W., Sander C., Biopolymers 22, 2577–2637, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Kemp G.J.L., Jiao Z., Gray P.M.D., Fothergill J.E.: Combining Computation with Database Access in Biomolecular Computing, ADB 94, Vadstena, Sweden, p 317–335, 1994.

    Google Scholar 

  18. Kim, W.: Object-Oriented Database Systems: Promises, Reality and Future. In W. Kim (Ed.), Modern Database Systems, ACM Press, 1995.

    Google Scholar 

  19. Klas, W., Aberer, K., Neuhold, E.J. 1994. Object_Oriented Modeling for Hypermedia Systems using the VODAK Modelling Language (VML). In: Advances in Object_Oriented Database Systems, A. Dogac, T. Ozsu, A. Biliris, T. Sellis eds., NATO ASI Series F 130, p 389–434, Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  20. Lamb, C., Landis, G., et al.: The ObjectStore Database System. Comm. of the ACM, Vol. 34, No. 11, p 32–39, 1991.

    Article  Google Scholar 

  21. Maier, D.: The Theory of Relational Databases, Computer Science Press, 1983.

    Google Scholar 

  22. Needleman, S.B., Wunsch, C. A.: General Method Applicable to the Search for Similarities in the Amino Acid Sequences of Two Proteins, Proc. of the National Academy of Science, Vol. 48, p 444–453, 1970.

    Google Scholar 

  23. Nishikawa, K., Ishino, S., Takenaka, H., Norioka, N., Hirai, T., Yao, T. and Seto, Y.:, Constructing a protein mutant database, Protein Engng, 7, 733, 1994.

    Article  CAS  Google Scholar 

  24. Nukhres O., Elmagarmis A.K., Eds., Object_Oriented Multidatabase Systems, Prentice Hall, 1995.

    Google Scholar 

  25. Pearson W.R., Lipman, D.J., PNAS (1988) 85, p 2444–2448, 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: “Predicting Receptor-Ligand Interactions by an Incremental Construction Algorithm”, accepted for Journal of Molecular Biology, 1996.

    Google Scholar 

  27. Ritter, O., Kocab, P., Senger, M., Wolf, D., Suhai, S.: “Prototype Implementation of the Integrated Genomic Database”, Computers and Biomedical Research, 27, p 97–115, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Schneider: The HSSP database of protein structure-sequence alignments, Nucleic Acids Res. 24, p 201–205, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Sheth, A.P., Larson, J.A., Federated Database Systems for Managing Distributed, Hetereogenous, and Autonomous Databases, ACM Computing Surveys, vol. 22, no. 3, p 183–236, 1990.

    Article  Google Scholar 

  30. VODAK V 4.0, User Manual, GMD technical report No. 910, 1995.

    Google Scholar 

  31. Vriend, G.: WHAT IF: A molecular modeling and drug design program., J. Mol. Graph. 8, 52–56, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Vriend, G., Sander, C., Stouten, P.F.W.: A novel search method for protein sequence-structure relations using property profiles, Protein Engineering, vol. 7, no.1, pp. 23–29, 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Wollny, B., Process 3, p 64–66, 1995.

    Google Scholar 

  34. Wolniewciz R., Graefe G.: Algebraic Optimization of Computations over Scientific Databases, Proc. of the 19th VLDB Conf., Dublin, Ireland, p 13–24, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aberer, K., Hemm, K., Hendlich, M. (1997). Data Management for Ligand-Based Drug Design. In: Suhai, S. (eds) Theoretical and Computational Methods in Genome Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5903-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5903-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7708-5

  • Online ISBN: 978-1-4615-5903-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics