Skip to main content
Book cover

Neurobiology pp 109–128Cite as

Comparison of “Near Membrane” and Bulk Cytoplasmic Calcium Concentration in Single Cardiac Ventricular Myocytes During Spontaneous Calcium Waves

  • Chapter
  • 244 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 289))

Abstract

In this paper we discuss differences in the time course of changes of intracellular calcium concentration ([Ca2+]i) occurring in the bulk cytoplasm and adjacent to the surface membrane (subsarcolemmal or ‘fuzzy’ space) during spontaneous oscillatory release of Ca2+ from the sarcoplasmic reticulum (SR). Sarcolemmal Na-Ca exchange current and [Ca2+]i were measured in single voltage clamped rat ventricular myocytes.

Spontaneous Ca2+ release from the SR resulted in a transient inward current which developed and decayed more quickly than the corresponding changes in [Ca2+]i measured using the Ca2+ sensitive fluorescent indicators Indo-1, Fluo-3 and Calcium Green-1. The discrepancy in the time course of changes in current and [Ca2+]i results in a hysteresis between [Ca2+]i and current.

A similar hysteresis was observed if [Ca2+]i was raised with caffeine. The hysteresis between current and [Ca2+]i was removed by low pass filtering the current record with a time constant of 132 ms.

Digital video imaging was performed to allow simultaneous measurement of [Ca2+]i at all points of the cell during spontaneous release of Ca2+ from the SR. The hysteresis between current and [Ca2+]i remained even after the spatial and temporal properties of the Ca2+ wave and any non linear relationship between current and fluorescence and [Ca2+]i were accounted for.

Using a model in which there is a barrier to diffusion of Ca2+ between the subsarcolemmal and bulk compartments the hysteresis between current and [Ca2+]i can be accounted for. The calculated subsarcolemmal Ca2+ concentration rises before, and to a higher level than the measured bulk cytoplasmic Ca2+ concentration. The delay introduced by this diffusion barrier is equivalent to a time constant of 133 ms.

The subsarcolemmal space introduced in this paper may be equivalent to the ‘fuzzy space’ previously suggested to be important in controlling SR Ca2+ release.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashley, C. C., Ellory, J. C. & Griffiths, P. J. (1977). Caffeine and the contractility of single muscle fibres from the barnacle balanus nubilis. Journal of Physiology 269, 421–439.

    PubMed  CAS  Google Scholar 

  • Barcenas-ruiz, L., Beuckelmann, D. J. & Wier, W. G. (1987). Sodium-calcium exchange in heart: Membrane currents and changes in [Ca2+]i. Science 238, 1720–1722.

    Article  PubMed  CAS  Google Scholar 

  • Berlin, J. R., Bassani, J. W. & Bers, D. M. (1994). Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophysical Journal 67, 1775–1787.

    Article  PubMed  CAS  Google Scholar 

  • Berlin, J. R., Cannell, M. B. & Lederer, W. J. (1989). Cellular origins of the transient inward current in cardiac myocytes Role of fluctuations and waves of elevated intracellular calcium. Circulation Research 65, 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Beuckelmann, D. J. & Wier, W. G. (1989). Sodium-calcium exchange in guinea-pig cardiac cells: Exchange current and changes in intracellular Ca2+. Journal of Physiology 414, 499–520.

    PubMed  CAS  Google Scholar 

  • Bond, M., Shuman, H., Somlyo, A. R & Somlyo, A. V. (1984). Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle. Journal of Physiology 357, 185–201.

    PubMed  CAS  Google Scholar 

  • Brown, A. M., Lee, K. S. & Powell, T. (1981). Sodium current in single rat heart muscle cells. Journal of Physiology 318, 479–500.

    PubMed  CAS  Google Scholar 

  • Callewaert, G., Cleemann, L. & Morad, M. (1989). Caffeine-induced Ca2+ release activates Ca2+ extrusion via Na+-Ca2+ exchanger in cardiac myocytes. American Journal of Physiology 257, C147–C152.

    PubMed  CAS  Google Scholar 

  • Cannell, M. B., Berlin, J. R. & Lederer, W. J. (1987). Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238, 1419–1423.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, H., Lederer, W. J. & Cannell, M. B. (1993). Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.

    Article  PubMed  CAS  Google Scholar 

  • Eisner, D. A. & Lederer, W. J. (1979). The role of the sodium pump in the effects of potassium-depleted solutions on mammalian cardiac muscle. Journal of Physiology 294, 279–301.

    PubMed  CAS  Google Scholar 

  • Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. American Journal of Physiology 245, C1–C14.

    PubMed  CAS  Google Scholar 

  • Fabiato, A. (1985). Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. Journal of general Physiology 85, 291–320.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato, A. & Fabiato, F. (1975). Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. Journal of Physiology 249, 469–495.

    PubMed  CAS  Google Scholar 

  • Fedida, D., Noble, D., Rankin, A. C. & Spindler, A. J. (1987). The arrhythmogenic transient inward current iTI and related contraction in isolated guinea-pig ventricular myocytes. Journal of Physiology 392, 523–542.

    PubMed  CAS  Google Scholar 

  • Ganitkevich, V. Y. & Isenberg, G. (1996). Dissociation of subsarcolemmal from global cytosolic [Ca2+] in myocytes isolated from guinea-pig coronary artery. J. Physiol. 490, 305–318.

    PubMed  CAS  Google Scholar 

  • Isenberg, G. & Wendt-Gallitelli, M. F. (1990). X-ray microprobe analysis of sodium concentration reveals large transverse gradients from the sarcolemma to the centre of voltage-clamped guinea-pig ventricular myocytes. Journal of Physiology 420, 86P

    Google Scholar 

  • Kass, R. S., Lederer, W. J., Tsien, R. W. & Weingart, R. (1978). Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. Journal of Physiology 281, 187–208.

    PubMed  CAS  Google Scholar 

  • Kass, R. S., Tsien, R. W & Weingart, R. (1978). Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. Journal of Physiology 281, 209–226.

    PubMed  CAS  Google Scholar 

  • Kimura, J., Noma, A. & Irisawa, H. (1986). Na-Ca exchange current in mammalian heart cells. Nature 319, 596–597.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, N. & Hume, J. R. (1990). Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Lederer, W. J., Niggli, E. & Hadley, R. J. (1992). Sodium-calcium exchange in excitable cells: Fuzzy Space. Science 248, 283

    Article  Google Scholar 

  • Lipp, P. & Niggli, E. (1993). Microscopic spiral waves reveal positive feedback in subcellular calcium signalling. Biophysical Journal 65, 2272–2276.

    Article  PubMed  CAS  Google Scholar 

  • Lipp, P. & Pott, L. (1988). Transient inward current in guinea-pig atrial myocytes reflects a change of sodium-calcium exchange current. Journal of Physiology 397, 601–630.

    PubMed  CAS  Google Scholar 

  • Lipp, P., Pott, L., Callewaert, G. & Carmeliet, E. (1990). Simultaneous recording of Indo-1 fluorescence and Na+/Ca2+ exchange current reveals two components of Ca2+ release from sarcoplasmic reticulum of cardiac atrial myocytes. FEBS. Letters. 275, 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Mechmann, S. & Pott, L. (1986). Identification of Na-Ca exchange current in single cardiac myocytes. Nature 319, 597–599.

    Article  PubMed  CAS  Google Scholar 

  • Miura, Y. & Kimura, J. (1989). Sodium-calcium exchange current. Dependence on internal Ca and Na and competitive binding of external Na and Ca. Journal of general Physiology 93, 1129–1145.

    Article  PubMed  CAS  Google Scholar 

  • Nabauer, M., Callewaert, G., Cleemann, L. & Morad, M. (1989). Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800–803.

    Article  PubMed  CAS  Google Scholar 

  • O’neill, S. C., Donoso, P. & Eisner, D. A. (1990). The role of [Ca2+]i and [Ca2+]i-sensitization in the caffeine contracture of rat myocytes: measurement of [Ca2+]; and [caffeine]i Journal of Physiology 425, 55–70.

    CAS  Google Scholar 

  • Osipchuk, Y. V., Wakui, M., Yule, D. I., Gallacher, D. V. & Petersen, O. H. (1990). Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca2+: simultaneous microfluorimetry and Ca2+ dependent Cl-current recording in single pancreatic acinar cells. EMBO.J. 9, 697–704.

    PubMed  CAS  Google Scholar 

  • Page, E. (1978). Quantitative ultrastructural analysis in cardiac membrane physiology. American Journal of Physiology 235, C147–C158.

    PubMed  CAS  Google Scholar 

  • Page, E., Mccallister, L. P. & Power, B. (1971). Stereological measurements of cardiac ultrastructures implicated in excitation-contraction coupling (sarcotubules and t-system). Proc.Natl.Acad.Sci. U.S.A. 68, 1465–1466.

    Article  PubMed  CAS  Google Scholar 

  • Sipido, K. R. & Wier, W. G. (1991). Flux of Ca2+ across the sarcoplasmic reticulum of guinea-pig cardiac cells during excitation-contraction coupling. Journal of Physiology 435, 605–630.

    PubMed  CAS  Google Scholar 

  • Stehno-Bittel, L. & Sturek, M. (1992). Spontaneous sarcoplasmic reticulum calcium release and extrusion from bovine, not porcine, coronary artery smooth muscle. Journal of Physiology 451, 49–78.

    PubMed  CAS  Google Scholar 

  • Stern, M. D. (1992). Theory of excitation-contraction coupling in cardiac muscle. Biophysical Journal 63, 497–517.

    Article  PubMed  CAS  Google Scholar 

  • Stern, M. D., Capogrossi, M. C. & Lakatta, E. G. (1988). Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium. 9, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Stern, M. D. & Lakatta, E. G. (1992). Excitation-contraction coupling in the heart: the state of the question. FASEB 6, 3092–3100.

    CAS  Google Scholar 

  • Takamatsu, T. & Wier, W. G. (1990). Calcium waves in mammalian heart: quantification of origin, magnitude, waveform, and velocity. FASEB.J. 4, 1519–1525.

    PubMed  CAS  Google Scholar 

  • Trafford, A. W., Dìaz, M. E., O’neill, S. C. & Eisner, D. A. (1995). Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. J. Physiol 488, 577–586.

    PubMed  CAS  Google Scholar 

  • Trafford, A. W., O’Neill, S. C. & Eisner, D. A. (1993). Factors affecting the propagation of locally activated systolic Ca transients in rat ventricular myocytes. Pflugers Archiv European Journal of Physiology 425, 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Varro, A., Negretti, N., Hester, S. B. & Eisner, D. A. (1993). An estimate of the calcium content of the sarcoplasmic reticulum in rat ventricular myocytes. Pflugers Archiv European Journal of Physiology 423, 158–160.

    Article  PubMed  CAS  Google Scholar 

  • Wendt-Gallitelli, M. F. & Isenberg, G. (1991). Total and free myoplasmic calcium during a contraction cycle: x-ray microanalysis in guinea-pig ventricular myocytes. Journal of Physiology 435, 349–372.

    PubMed  CAS  Google Scholar 

  • Wendt-Gallitelli, M. F., Voigt, T. & Isenberg, G. (1993). Microheterogeneity of subsarcolemmal sodium gradients, electron probe microanalysis in guinea-pig ventricular myocytes. Journal of Physiology 472, 33–44.

    PubMed  CAS  Google Scholar 

  • Wier, W. G., Cannell, M. B., Berlin, J. R., Marban, E. & Lederer, W. J. (1987). Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. Science 235, 325–328.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trafford, A.W., Díaz, M.E., O’Neill, S.C., Eisner, D.A. (1996). Comparison of “Near Membrane” and Bulk Cytoplasmic Calcium Concentration in Single Cardiac Ventricular Myocytes During Spontaneous Calcium Waves. In: Torre, V., Conti, F. (eds) Neurobiology. NATO ASI Series, vol 289. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5899-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5899-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7706-1

  • Online ISBN: 978-1-4615-5899-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics