Skip to main content

Biophysical Aspects of Cortical Networks

  • Chapter
Book cover Neurobiology

Part of the book series: NATO ASI Series ((NSSA,volume 289))

  • 238 Accesses

Abstract

Artificial neuronal networks provide attractive models for cortical function, in particular, if “cognitive” properties emerge from their structure. Unfortunately, it turns out difficult to set up classical models which are comparable to the biological system on the level of single neurons. We look at artificial neuronal networks from a fresh perspective, which has the potential to extend their merits to a detailed and quantitative description of physiological phenomena in nerve nets of spiking neurons. In fact, the framework of stochastic point processes provides the tools for the construction of mathematically consistent models, which allow for a direct comparison with electrophysiological recordings on the level of individual nerve cells, in particular, if these are part of a large network. Moreover, the estimation of model parameters from experiments becomes feasible, so that a quantitative theoretical treatment as well as computer simulations of large networks under realistic conditions can be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70:1629–1638

    PubMed  CAS  Google Scholar 

  2. Abeles M, Prut Y, Bergman H, Vaadia E, Aertsen A (1993) Integration, synchronicity and periodicity. In: Aertsen A (ed.) Brain Theory: Spatio-Temporal Aspects of Brain Function. 149–181. Amsterdam, New York, London, Tokyo: Elsevier

    Google Scholar 

  3. Artola A, Bröcher S, Singer W (1990) Different volatage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347:69–72

    Article  PubMed  CAS  Google Scholar 

  4. Bernander ö, Douglas RJ, Martin KAC, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88:11569–11573

    Article  PubMed  CAS  Google Scholar 

  5. Braitenberg V (1974) On the representation of objects and their relations in the brain. In: Conrad M, Güttinger W, Dallin M (eds.) Physics and Mathematics of the Nervous System. 290–298. Berlin, Heidelberg, New York: Springer.

    Chapter  Google Scholar 

  6. Braitenberg V, Schüz A (1991) Anatomy of the Cortex—Statistics and Geometry. Studies of Brain Function, vol. 18. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  7. Clay JR, DeFelice LJ (1983) Relationship between membrane excitability and single channel open-close kinetics. Biophys J 42:151–157

    Article  PubMed  CAS  Google Scholar 

  8. Daley DJ, Vere-Jones D (1988) An Introduction to the Theory of Point Processes. Springer Series in Statistics. New York: Springer

    Google Scholar 

  9. Hille B (1992) Ionic Channels of Excitable Membranes (2nd ed.) Sunderland (MA): Sinauer

    Google Scholar 

  10. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  11. Koch C, Segev I (1989) Methods in Neuronal Modeling—From Synapses to Networks. Cambridge: MIT-Press

    Google Scholar 

  12. Little WA (1974) The existence of persistent states in the brain. Math Biosci 19:101–120

    Article  Google Scholar 

  13. Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506

    Article  PubMed  CAS  Google Scholar 

  14. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    PubMed  CAS  Google Scholar 

  15. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  16. Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 50:1645–1662

    Article  Google Scholar 

  17. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys J 7:391–418

    CAS  Google Scholar 

  18. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7:419–440

    CAS  Google Scholar 

  19. Reyes AD, Fetz EE (1993) Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. J Neurophysiol 69:1673–1683

    PubMed  CAS  Google Scholar 

  20. Reyes AD, Fetz EE (1993) Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J Neurophysiol 69:1661–1672

    PubMed  CAS  Google Scholar 

  21. Ripley BD (1987) Stochastic Simulation. Wiley Series in Probability and Mathematical Statistics. New York: Wiley

    Google Scholar 

  22. Rotter S, Heck D, Aertsen A, Vaadia E (1993) A stochastic model for networks of spiking cortical neurons: Time-dependent description on the basis of membrane currents. In: Eisner N, Heisenberg M (eds.) Gene—Brain—Behavior. No. 491. Stuttgart: Thieme

    Google Scholar 

  23. Rotter S (1994) Wechselwirkende stochastische Punktprozesse als Modell für neuronale Aktivität im Neocortex der Säugetiere. Reihe Physik, vol. 21. Frankfurt: Harri Deutsch

    Google Scholar 

  24. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569–579

    Article  PubMed  CAS  Google Scholar 

  25. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. J Neurosci 13:334–350

    PubMed  CAS  Google Scholar 

  26. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72

    Article  PubMed  CAS  Google Scholar 

  27. Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in the monkey cortex in relation to behavioral events. Nature 373:515–518

    Article  PubMed  CAS  Google Scholar 

  28. Vaadia E, Bergman H, Abeles M (1989) Neuronal activities related to higher brain functions—theoretical and experimental implications. IEEE Transact Biomed Eng BME-36:25–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rotter, S. (1996). Biophysical Aspects of Cortical Networks. In: Torre, V., Conti, F. (eds) Neurobiology. NATO ASI Series, vol 289. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5899-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5899-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7706-1

  • Online ISBN: 978-1-4615-5899-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics