Skip to main content

Precise and Perceptually Relevant Processing of Amplitude Modulation in the Auditory System

Physiological and Functional Models

  • Chapter
Neurobiology

Part of the book series: NATO ASI Series ((NSSA,volume 289))

  • 238 Accesses

Abstract

The peripheral representation of sounds is transmitted by the auditory nerve to intermediate stages of the nervous system, preceding identification. We suppose that main features of sounds corresponding to perceptual dimensions like pitch and timbre are already extracted in these levels, complementing richer and extensive representations localised in cortical areas. This approach allows us to consider a biological system having a rather simple architecture, known inputs and outputs. Understanding physiology allows us to perform auditory scene analysis (ASA) grounded on plausible basis. ASA is an emerging concept integrating particular properties of the auditory system working together in order to deal with a complex environment (Bregman, 1990). From the neurobiological point of view, the goals of such a modelling work are: (1) better approaching the way of coding and controlling information in the nervous system, (2) comparing with physiological data, and finally (3) reducing the computational processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M. (1982) Role of the cortical neuron: Integrator or coincidence detector?, Isr. J. Med. Sci., 18, 83–92.

    PubMed  CAS  Google Scholar 

  2. Assmann, P.F. & Summerfield, Q. (1990) Modelling perception of concurrent vowels: vowels with different fundamental frequencies, JASA, 88:2, 680–697.

    CAS  Google Scholar 

  3. Banks, M.I. & Sachs, M.B. (1991) Regularity analysis in a compartmental model of chopper units in the anteroventral cochlear nucleus neurons, Biol. Cybern., 64, 273–283.

    Article  Google Scholar 

  4. Berthommier F. (1991) Neural mapping of sensory inputs in the auditory system, in Cognitiva 90, Kohonen, T. & Fogelman-Soulie, F. (Eds.), Amsterdam North Holland, 25–34.

    Google Scholar 

  5. Berthommier, F. (1992) Intégration neuronale dans le système auditif; Modélisation de réseaux neuronaux temporo-dépendants, Thèse GBM-USMG.

    Google Scholar 

  6. Berthommier, F. (1993) A probabilistic model of neuronal integration, 2d Conf. in Math. Applied to Biol. and Med., Lyon, to appear in J. of Biol. Systems, vol. 3, no. 4.

    Google Scholar 

  7. Berthommier, F., Buonviso, N. & Chaput, M. (1995) A probabilistic model of temporal processing in the olfactory bulb, AIDRI, Hermès, Paris.

    Google Scholar 

  8. Berthommier, F. & Meyer, G. (1995) Source separation by a functional model of amplitude demodulation, Eurospeech, Madrid, Vol. 1, 135–138.

    Google Scholar 

  9. Berthommier, F. & Tessier, E. (1996) Source segregation based on knowledge of physical properties of sources and sounds, ESCA workshop, Keele (submitted).

    Google Scholar 

  10. Bregman, A.S. (1990) Auditory scene analysis, MIT Press, London.

    Google Scholar 

  11. Cooke, M.P. (1992) An explicit time-frequency characterization of synchrony in an auditory model, Comp. Speech and Lang., 44, 99–122.

    Google Scholar 

  12. Frisina, R.D., Smith, R.L. & Chamberlain, S.C. (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement, Hear. res., 44, 99–122.

    CAS  Google Scholar 

  13. Gautier, G. & Pouillot, M. (1995) Etude et conception d’un circuit intégré neuronal à dynamique temporelle, Project supervised by Berthommier, F. & Castelli, E., Tech. Report ENSERG.

    Google Scholar 

  14. Hewitt, M.J., Meddis, R. & Shackleton, T.M. (1992) A computer-model of cochlear nucleus stellate cell: responses to amplitude modulated and pure tone stimuli, JASA, 91, 2096–2109.

    CAS  Google Scholar 

  15. Hodgkin, A.L. & Huxley, A.F. (1952) Currents carried by sodium and potassium ions through membranes of the giant axon of Loligio, J. Physiol., London, 116, 500–544.

    Google Scholar 

  16. Kohonen, T. (1982) Self-organized formation of topologically correct feature maps, Biol. Cybern., 43, 59–69.

    Article  Google Scholar 

  17. Langner, G. & Schreiner, C.E. (1988) Periodicity coding in the inferior colliculus of the cat. I: Neuronal mechanisms, J. Neurophysiol., 60, 1799–1822.

    PubMed  CAS  Google Scholar 

  18. Licklider, J.C. (1959) Three auditory theories, In Psychology: A study of a science, Koch, S. (Ed.), New york: McGraw-Hill, Vol. 1, 41–144.

    Google Scholar 

  19. Lorenzi, C., Berthommier, F. & Tirandaz, N. (1993) Physiological Modeling of Cochlear Nucleus Responses: Perception of complex sounds, ESANN 93, Bruxelles.

    Google Scholar 

  20. Lorenzi, C., Micheyl, C. & Berthommier, F. (1995) Neuronal correlates of perceptual amplitude-modulation detection, Hear. Res. (in press)

    Google Scholar 

  21. Meyer, G. & Berthommier, F. (1995) Vowel segregation with amplitude modulation maps: modelling studies, SPHERE Tech. Report.

    Google Scholar 

  22. Patterson, R.D. & Holdsworth, J. (1991) A functional model of neural patterns and auditory images, in: Advance in speech, Hearing and Langage processing, Vol. 3, Ainsworth, W.A. (Ed.), JAI Press, London.

    Google Scholar 

  23. Piquemal, M., Schwartz, J.L. & Berthommier, F. (1995) Auditory and visual detection of plosive bursts in noisy CVC sequences, Neuronime, Marseille.

    Google Scholar 

  24. Riquimaroux, H. & Hashikawa, T. (1994) Units in the primary auditory cortex of the Japanese monkey can demonstrate a conversion of temporal and place pitch in the central auditory system, J. de Phys., Suppl. au no. III, Vol. 4, C5-419–425.

    Google Scholar 

  25. Slaney, M. & Lyon, R.F. (1991) Apple Hearing Demo Reel, Apple Comp. Inc.Apple, Tech. Rep. no. 25.

    Google Scholar 

  26. Strickland, E.A. & Viemeister, N.F. (1994) What aspects of the enveloppe are relevant for detection of amplitude modulation?, JASA, 95, 2964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Berthommier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berthommier, F., Lorenzi, C. (1996). Precise and Perceptually Relevant Processing of Amplitude Modulation in the Auditory System. In: Torre, V., Conti, F. (eds) Neurobiology. NATO ASI Series, vol 289. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5899-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5899-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7706-1

  • Online ISBN: 978-1-4615-5899-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics