Skip to main content

The Molecular Genetics of Wilms Tumor

  • Chapter
Cancer Genes

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 7))

Abstract

Wilms’ tumor (WT), a malignancy of embryonal kidney cells, posesses several significant opportunities and challenges to the understanding of the molecular basis of tumorigenesis and treatment response. First, from the perspective of the genetic basis of tumorigenesis, WT provides one of the most clear cut circumstances under which the underlying genetic contributions to tumorigenesis can be analyzed. Second, from the perspective of molecular biology, the isolation of the WT1 tumor suppressor gene provides a critical initiation point for developing an understanding of the relationship between normal differentiation and tumorigenesis. Third, from the perspective of treatment response, WT provides a critical challenge to investigators concerned with extending the high success rate for treatment of WT to other forms of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, J.F., Pritchard-Jones, K., Bickmore, W.A., Hastie, N.D., and Bard, J.B.L. (1992). The expression of the Wilms’ tumour gene WT1 in the developing mammalian embryo. Mech. Develop. 40, 85–97.

    Article  Google Scholar 

  • Bardeesy, N., Falkoff, D., Petruzzi, M.-J., Nowak, N., Zabel, B., Adam, M., Aquiar, M.C., Grundy, P., Shows, T., and Pelletier, J. (1994). Anaplastic Wilms’ tumor, a subtype displaying poor prognosis, harbours p53 gene Mutations. Nature Genetics 7, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Bardeesy, N., Beckwith, J.B., and Pelletier, J. (1995). Clonal expansion and attenuated apoptosis in Wilms’ tumors are associated with p53 gene mutations. Cancer Res. 55, 215–219.

    PubMed  CAS  Google Scholar 

  • Beckwith, J.B. (1963). Extreme cytomegaly of the fetal adrenal cortex, omphalocoele, hyperplasia of kidneys and pancreas, and Leydig-cell hyperplasia. Another syndrome? Presented at the Annual Meeting of Western Society for Pediatric Research, Los Angeles, California, Nov. 11.

    Google Scholar 

  • Bruening, W., Bardeesy, N., Silverman, B.L., Cohn.. R.A., Machin, G.A., Aronson, A.J., Housman, D., and Pelletier, J. (1992). Germline intronic and exonic mutations in the Wilms’ tumour gene (WT1) affecting urogenital development. Nature Genet. 1, 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Bruening, W., and Pelletier, J. (1994). Denys-Drash syndrome: a role for the WT1 tumour suppressor gene in. uro-genital development. Seminars in Developmental Biology 5, 333–343.

    Article  CAS  Google Scholar 

  • Bruening, W., Winnett, E., and Pelletier, J. (1995) Wilms’ tumor: a paradigm for insights into development and cancer. Cancer Investigation 13, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Buckler, A., Pelletier, J., Haber, D.A., Glaser, T., and Housman, D.E. (1991). Isolation, characterization and expression of the murine Willms’ tumor gene (WT1) during kidney development. Mol. Cell. Biol. 11, 1707–1712.

    PubMed  CAS  Google Scholar 

  • Call, K. M., Glaser, T., Ito, C.Y., Buckler, A.J., Pelletier, J., Haber, D.A., Rose, E.A., Kral, A.,Yeger, H., Lewis, W.H., Jones, C., and Housman, D.E. (1990). Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60, 509–520.

    Article  PubMed  CAS  Google Scholar 

  • Christy, B., Lau, L. F., and Nathans, D. (1988). A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with zinc finger sequences. Proc. Natl. Acad. Sci. USA. 85, 7857–7861.

    Article  PubMed  CAS  Google Scholar 

  • Coppes, M. J., Liefers, G.J., Paul, P., Yeger, H., and Williams, B.R.G. (1993). Homozygous somatic WT1 point mutations in sporadic unilateral Wilms tumor. Proc. Natl. Acad. Sci. USA. 90, 1416–1419.

    Article  PubMed  CAS  Google Scholar 

  • Denys, P., Malvaux, P., van den Berghe, H., Tanghe, W., and Proesmans, W. (1967). Association d’un syndrĂłme anatomo-pathologique de pseudohermaphrodisme masculin, d’une tumeur de Wilms’, d’une nephropathie parenchymateuse et d’un mosaĂŻcism XX/XY. Arch. Fr Pediatr. 24, 729–739.

    PubMed  CAS  Google Scholar 

  • Dey, B.R., Sukhatme, V.P., Roberts, A.B., Sporn, M.B., Rauscher III, F.J., and Kim, S.-J. (1994). Repression of the transforming growth factor-Ăźl gene by the Wilms’ tumor suppressor WT1 gene product. Mol. Endocrin., 8, 595–602.

    Article  CAS  Google Scholar 

  • Drash, A., Sherman, F., Hartmann, W.H., and Blizzard, R.M. (1970). A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J. Pediatr: 76, 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, I.A., Madden, S.L., Rohwer-Nutter, P., Bell, G.L., Sukhatme, V.P., and Rauscher III, F.J. (1992). Repression of the insulin-like growth factor II gene by the Wilms’ tumor suppressor gene WTI. Science 257, 674–678.

    Article  PubMed  CAS  Google Scholar 

  • Englert, C., Hou, X., Maheswaran, S., Bennett, P., Ngwu, C., Re, G.G., Julian, Garvin, A., Rosner, M.R., and Haber, D.A. (1995). WTI suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J., 14, 4662–4675.

    PubMed  CAS  Google Scholar 

  • Gashler, A.L., Bonthron, D.T., Madden, S.L., Rauscher III, F.J., Collins, T., and Sukhatme, V.P. (1992). Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms’ tumor suppressor WTI. Proc. Natl. Acad. Sci. USA 89, 10984–10988.

    Article  PubMed  CAS  Google Scholar 

  • Goodyer, P., Dehbi, M., Torban, E., Bruening, W., and Pelletier, J. (1995). Repression of the retinoic acid receptor-a gene by the Wilms’ tumor suppressor gene product, wtl.Oncogene 10, 1125–1129.

    CAS  Google Scholar 

  • Grundy, P., Koufos, A., Morgan, K., Li, F.P.; Meadows, A.T., and Cavenee, W.K. (1988). Familial predisposition to Wilms’ tumour does not map to the short arm of chromosome 1I. Nature 336, 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Haber, D. A., Buckler, A.J., Glaser, T., Call, K.M., Pelletier, J., Sohn, R.L., Douglass, E.C., and Housman, D.E. (1990). An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 61, 1257–1269.

    Article  PubMed  CAS  Google Scholar 

  • Haber, D. A., Sohn, R.L., Buckler, A.J., Pelletier, J., Call, K.M., and Housman, D.E. (1991). Alternative splicing and genomic structure of the Wilms tumor gene WTI. Proc. Natl. Acad. Sci. USA. 88, 9618–9622.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M.A., Konicek, B., Song, A., Xia, X., Fredericks, W.J., and Rauscher III, F.J. (1993). Inhibition of colony-stimulating factor-I promoter activity by the product of the Wilms’ tumor locus. J. Biol. Chem. 268, 21271–21275.

    PubMed  CAS  Google Scholar 

  • Huff, V., Compton, D.A., Chao, L.-Y., Strong, L.C., Geiser, C.F., and Saunders, G.F. (1988). Lack of linkage of familial Wilms’ tumour to chromosome band 11p13. Nature 336, 377–378.

    Article  PubMed  CAS  Google Scholar 

  • Huff, V., Reeve, A.E., Leppert, M., Strong, L.C., Douglass, E.C., Geiser, C.F., Li, F.P., Meadows, A., Callen, D.F., Lenoir, G., and Saunders, G.F. (1992). Nonlinkage of 16q markers to familial predisposition to Wilms’ tumor. Cancer Res 52, 6117–6120.

    PubMed  CAS  Google Scholar 

  • Joy Ping, A., Reeve, A.E., Law, D.J., Young, M.R. Boehnke, M., and Feinberg, A.P. (1989). Genetic linkage of Beckwith-Wiedemann syndrome to l 1p15. Am. J. Hum. Genet. 44, 720–723.

    Google Scholar 

  • Knudson Jr., A.G. and Strong, L.C. (1972). Mutation and cancer: A model for Wilms’ tumor of the kidney. J. Natl. Cancer Inst. 48, 313–324.

    PubMed  Google Scholar 

  • Koufos, A., Grundy, P., Morgan, K., Aleck, K.A., Hadro, T., Lampkin, B.C., and Cavenee, W.K. (1989). Familial Wiedemann-Beckwith syndrome and a second Wilms’ tumor locus both map to 11p15.5. Am. J. Hum. Genet. 44, 711–719.

    PubMed  CAS  Google Scholar 

  • Kreidberg, J. A., Sariola, H., Loring, J.M., Maeda, M., Pelletier, J., Housman, and Jaenisch, R. (1993). WT-1 is required for early kidney development. Cell 74, 679–691.

    Article  PubMed  CAS  Google Scholar 

  • Little, M. H., Prosser, J., Condie, A., Smith, P.J., van Heyningen, V., and Hastie, N.D. (1992). Zinc finger point mutations within the WTI gene in Wilms tumor patients. Proc. Natl. Acad. Sci. USA. 89, 4791–4795.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, S.W., Ruley, H.E., Jacks, T., and Housman, D.E. (1993). p53-Dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967.

    Article  PubMed  CAS  Google Scholar 

  • Mannens, M., Slater, R.M., Heyting, C., Bliek, J., de Kraker. J., Coad, N., de Pagter-Holthuizen, P., and Pearson, P.L. (1988). Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms’ tumours. Hum. Genet. 81, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga, E. (1981). Genetics of Wilms’ tumor. Hum. Genet. 57, 231–246.

    Article  PubMed  CAS  Google Scholar 

  • Maw, M.A., Grundy, P.E., Millow, L.J., Eccles, M.R., Dunn, R.S., Smith, P.J., Feinberg, A.P., Law, D.J., Paterson, M.C., Telzerow, P.E., Callen, D.F., Thompson, A.D., Richards, R.I., and Reeve, A.E. (1992). A third Wilms’ tumor locus on chromosome 16q. Cancer Res. 52, 3094–3098.

    PubMed  CAS  Google Scholar 

  • McCann, S., Sullivan, J., Guerra, J., Arcinas, M., and Boxer, L.M. (1995). Repression of the c-mybgene by WT1 protein in T and B cell lines. J. Biol. Chem. 270, 23785–23789.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R.W., Fraumeni, J.F., and Manning, M.D. (1964). Association of Wilms’ tumor with aniridia, hemihypertrophy and other congenital malformations. N. Eng. J. Med. 270, 922–927.

    Article  CAS  Google Scholar 

  • Nakagama, H., Heinrich, G., Pelletier, J., and Housman, D. (1995). Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product. Mol. Ce1.1 Biol. 15, 1489–1498.

    CAS  Google Scholar 

  • Park, S., Bernard, A., Bove, K.E.,Sens, S.A., Hazen-Martin, D.-J., Julian Garvin, A., Haber, D.A. (1993a) Inacti- vation of WT1 in nephrogenic rests, genetic precursors to Wilms’ tumour. Nature Genetics 5, 363–367.

    Article  CAS  Google Scholar 

  • Park, S., Schalling, M., Bernard, A.,Maheswaran, S., Shipley, G.C., Roberts, D., Fletcher. J., Shipman, R., Rheinwold, J., Demetri, G., Griffin, J., Minden, M., Housman, D.E., and Haber, D.A. (1993b). The Wilms’ tumour gene WTI is expressed in murine mesoderm-derived tissues and mutated in a human mesothelioma. Nature Genetics 4, 415–420.

    Article  CAS  Google Scholar 

  • Park, S., Tomlinson, G., Nisen, P., Haber, D.A. (1993c). Altered trans-activational properties of a mutated WTI gene product in a WAGR-associated Wilms’ tumor. Cancer Res 53, 4757–4760.

    CAS  Google Scholar 

  • Pavletich, N.P., and Pabo, C.O. (1991). Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2. I A. Science 252, 809–817.

    Article  PubMed  CAS  Google Scholar 

  • Pavletich, N.P., and Pabo, C.O. (1993). Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 261, 1701–1707

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, J., Bruening, W., Kashtan, C.E., Mauer, S.M., Manivel, J.C., Striegel, J.E., Houghton, D.C., Junien, C., Habib, R., Fouser, L., Fine, R.N., Silverman, B.L.. Haber, D.A., and Housman, D.E. (1991). Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys- Drash syndrome. Cell 67, 437–447.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, J., Schalling, M., Buckler, A.J., Rogers, A., Haber, D.A., and Housman, D. (1991). Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes & Develop. 5, 1345–1356.

    Article  CAS  Google Scholar 

  • Pritchard-Jones, K., Fleming, S., Davidson, D., Bickmore, W., Porteous, D., Gosden, C., Bard, J., Buckler, A., Pelletier, D., Housman, D., van Heyningen, V., and Hastie, N. (1990). The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346, 194–197.

    Article  PubMed  CAS  Google Scholar 

  • Radice, P., Perotti, D., de Benedetti, V., Mondini, P., Radice, M.T., Pilotti, S., Luksch, R., Bellani, F.F., and Pierotti, M.A. (1995) Allelotyping in Wilms tumors identifies a putative third tumor suppressor gene on chromosome 11. Genomics 27, 497–501.

    Article  PubMed  CAS  Google Scholar 

  • Rauscher III, F. J., Morris, J.F., Tournay, O.E., Cook, D.M., and Curran, T. (1990). Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 250, 1259–1262.

    Article  PubMed  CAS  Google Scholar 

  • Reeve, A.E., Sih, S.A., Raizis, A.M., and Feinberg, A.P. (1989). Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol. Cell. Biol. 9, 1799–1803.

    PubMed  CAS  Google Scholar 

  • Riccardi, V.M., Sujansky, E., Smith, A.C., and Francke, U. (1978). Chromosomal imbalance in the aniridia/Wilms’ tumor association: I I p interstitial deletion. J. Pediatr. 61, 604–610.

    CAS  Google Scholar 

  • Rupprecht, H.D., Drummond, I.A., Madden, S.L., Rauscher III, F.J., and Sukhatme, V.P. (1994). The Wilms’ tumor suppressor gene WT1 is negatively autoregulated. J. Biol. Chem. 269, 6198–6206.

    PubMed  CAS  Google Scholar 

  • Ryan, G., Steele-Perkins, V., Morris, J.F., Rauscher III, F.J., and Dressler, G.R. (1995). Repression of Pax-2 by WTI during normal kidney development. Develop., 121, 867–875.

    CAS  Google Scholar 

  • Schwartz, C.E., Haber, D.A., Stanton, V.P., Strong, L.C., Skolnick, M.H., and Housman, D.E. (1991). Familial predisposition to Wilms’ tumor does not segregate with the WTI gene. Genomics 10, 927–930.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, P.M., Yang, X., Bowman, M., Roberts, V., and Sukumar, S. (1992) Molecular cloning of rat Wilms’ tumor complementary DNA and a study of messenger RNA expression in the urogenital system and the brain. Cancer Res. 52, 6407–6412.

    PubMed  CAS  Google Scholar 

  • Sotelo-Avila, C., Gonzalez-Crussi, F., and Fowler, J.W. (1980). Complete and incomplete forms of Beckwith-Wiedemann syndrome: Their oncogenic potential. J. Pediatr 96, 47–50, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Sukhatme, V.P. (1991). Proliferation of renal tubular cells and growth factors: The EGR family of nuclear signal transducers. Am. J. Kidney Dis. 17, 615–618.

    PubMed  CAS  Google Scholar 

  • Turleau, C., de Grouchy, J., Chavin-Colin, F., Martelli, H., Voyer, M., and Charlas, R. (1984). Trisomy 11p15 and Beckwith-Wiedemann syndrome: A report of two cases. Hum. Genet. 67, 219–221.

    Article  PubMed  CAS  Google Scholar 

  • Varanasi, R., Bardeesy, N., Ghahremani, M., Petruzzi, M.-J., Nowak, N., Adam. M.A., Grundy, P., Shows, T., and Pelletier, J. (1994). Fine structure analysis of the WT1 gene in sporadic Wilms’ tumors. Proc. Natl. Acad. Sci. USA 91, 3554–3558.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.Y., Madden, S.L., Deuel, T.F., and Rauscher III, F.J. (1992). The Wilms’ tumor gene product, WTI, represses transcription of the platelet-derived growth factor A-chain gene. J. Biol. Chem. 267, 21999–22002.

    PubMed  CAS  Google Scholar 

  • Wang, Z.-Y., Qiu, Q.-Q., Enger, K.T., and Deuel, T.F. (1993). A second transcriptionally active DNA-binding site for the Wilms’ tumor gene product, WTI. Proc. Natl. Acad. Sci. USA 90, 8896–8900.

    Article  PubMed  CAS  Google Scholar 

  • Werner, H., Re, G.G., Drummond, I.A., Sukhatme, V.P., Rauscher III, F.J., Sens, D.A., Garvin, A.J., LeRoith, D., and Roberts Jr, C.T. (1993) Increased expression of the insulin-like growth factor I receptor gene, IGFIR, in Wilms’ tumor is correlated with modulation of IGFIR promoter activity by the WTI Wilms’ tumor gene product. Proc. Natl. Acad. Sci. USA 90, 5828–5832.

    Google Scholar 

  • Wiedemann, H.R. (1964). Complexe malformatif familial avec hernie ombilicale et macroglossie-Un syndrome noveau? J. Genet. Hum. 13, 223–232.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pelletier, J., Nakagama, H., Housman, D.E. (1996). The Molecular Genetics of Wilms Tumor. In: Mihich, E., Housman, D. (eds) Cancer Genes. Pezcoller Foundation Symposia, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5895-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5895-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7704-7

  • Online ISBN: 978-1-4615-5895-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics