Skip to main content

Targeting Ubiquitin-Mediated Degradation for Proliferation Inhibitors

  • Chapter
Cancer Genes

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 7))

Abstract

The possibility of developing small molecule cancer chemotherapeutics using mechanism-based drug design has only recently been considered. The anti-cancer drugs presently available to the clinic were initially discovered as substances that inhibit the proliferation of tumors in animal models and/or of cultured cells (see 1,2 for reviews). The field of cancer chemotherapy started with the serendipitous discovery that mustard gas agents used in chemical warfare induced lymphoid hypoplasia, leading the way to their use in the treatment of Hodgkin’s and lymphocytic lymphoma. The availability of transplantable tumor models in laboratory animals was also of utmost importance to allow testing of novel chemical agents. The establishment of a mass screening effort at the US National Cancer Institute (NCI) to identify substances that inhibit the proliferation of cultured tumor cells, then led to the discovery of agents that have been useful to treat and cure certain tumors, including leukemias and lymphomas. The NCI approach has primarily focused on the identification of chemical entities that inhibit the proliferation of one or the other histological cell type. With the discovery of the multiple drug resistance (MDR-1) gene and its amplification in tumors, some cell lines that show MDR-1 amplification in addition to their parental lines were introduced into the screen, but still, to this date most of the NCI screening efforts have focused on the identification of novel compounds that inhibit cell proliferation with a distinctive pattern. The identification of the molecular targets of the available anti-cancer drugs, together with the explosion in the discovery of genetic and biochemical abnormalities in cancer cells have suggested the possibility of taking a molecular mechanism-based approach for the development of cancer therapeutics (see3, for review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calabresi, P., and B. Chabner. 1990. Antineoplastic Agents, p. 1209–1263. In A. Gilman, T. Rall, A. Nies and P. Taylor (ed.), The Pharmacological Basis of Therapeutics. Pergamon Press, New York.

    Google Scholar 

  2. DeVita, V. 1993. Principles of Chemotherapy, p. 276–292. In V. DeVita, S. Hellman and S. Rosenberg (ed.), Cancer: Principals and Practice of Oncology, vol. 1. J.B. Lippincott Company, Philadelphia.

    Google Scholar 

  3. Karp, J. E., and S. Broder. Molecular foundations of cancer: new targets for intervention. Nature Medicine 1: 309–320 (1995)

    Article  PubMed  CAS  Google Scholar 

  4. Grignani, F., M. Fagioli, M. Alcalay, L. Longo, R. P. Pandolfi, E. Donti, A. Biondi, F. L. Coco, and R. G. Pelicci. Acute promyelocytic leukemia: from genetics to treatment. Blood 83: 10–25 (1994)

    PubMed  CAS  Google Scholar 

  5. Tauchi, T., and H. E. Broxmeyer. BCR/ABL signla transduction. Int. J. Hematol 61: 105–112 (1995)

    Article  PubMed  CAS  Google Scholar 

  6. Gibbs, J. B., and A. Oliff. Pharmaceutical research in molecular oncology. Cell 79: 193–198 (1994)

    Article  PubMed  CAS  Google Scholar 

  7. Hartwell, L. H., and M. B. Kastan. Cell cycle control and cancer. Science 266: 1821–1828 (1994)

    Article  PubMed  CAS  Google Scholar 

  8. Draetta, G. F. cdc2 activation: the interplay of cyclin binding and thrl6l phosphorylation. Trends in Cell Biology 3: 287–289 (1993)

    Article  PubMed  CAS  Google Scholar 

  9. Sherr, C., and J. Roberts. Inhibitors of mammalian GI cyclin-dependent kinases. Genes& dev 9: 1149–1163 (1995)

    Article  CAS  Google Scholar 

  10. Sherr, C. G1 phase progression: cycling on cue. Cell 79: 551–555 (1994)

    Article  PubMed  CAS  Google Scholar 

  11. Draetta. Mammalian G1 cyclins. Cure. Opin. Cell Biol. 6: 842–846 (1994)

    Article  Google Scholar 

  12. Hunter, T., and J. Pines. Cyclins and Cancer II: cyclin D and Cdk inhibitors come of age. Cell 79: 573–582 (1994)

    Article  PubMed  CAS  Google Scholar 

  13. Hoffmann, I., G. Draetta, and E. Karsenti. Activation of the phosphatase activity of human Cdc25 by a cdk-cyclin E dependent phosphorylation at the G1/S transition. EMBOJ. 13: 4302–4310 (1994)

    CAS  Google Scholar 

  14. Jinno, S., K. Suto, A. Nagata, M. Igarashi, Y. Kanaoka, H. Nojima, and H. Okayama. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBOJ. 13: 1549–1556 (1994)

    PubMed  CAS  Google Scholar 

  15. Terada, Y., M. Tatsuka, S. Jinno, and H. Okayama. Requirement for tyrosine phosphorylation of Cdk4 in GI arrest induced by ultraviolet irradiation. Nature 376: 358–362 (1995)

    Article  PubMed  CAS  Google Scholar 

  16. Galaktionov, K., C. Jessus, and D. Beach. Rafl interaction with cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes & Develop. 9: 1046–1058 (1995)

    Article  CAS  Google Scholar 

  17. Galaktionov, K., A. Lee, J. Eckstain, G. Draetta, J. Meckler, M. Loda, and D. Beach. Cdc25 phosphatase as potential human oncogene. Science in press:(1995)

    Google Scholar 

  18. Scheffner, M., B. Werness, J. Huibregtse, A. Levine, and R. Howley. The E6 Oncoprotein Encoded by Human Papillomavirus Types 16 and 18 Promotes the Degradation of p53. Cell 63: 1129–1136 (1990)

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg, A. L. Functions of the proteasome: the lysis at the end of the tunnel. Science 268: 522–523 (1995)

    Article  PubMed  CAS  Google Scholar 

  20. Ciechanover, A. The Ubiquitin-Proteasome Proteolytic Pathway. Cell 79: 13–21 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. Huibregtse, J., M. Scheffner, and R. Howley. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10: 4129–4135 (1991)

    PubMed  CAS  Google Scholar 

  22. Rolfe, M., P. Romero, S. Glass, J. Eckstein, I. Berdo, A. Theodoras, M. Pagano, and G. Draetta. Reconstitution of p53-ubiquitinylation reaction from purified components: the role of human UBC4 and E6AP. Proc. Natl. Acad. Sci. USA 92: 3264–3268 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Scheffner, M., J. Huibregtse, and P. Howley. Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc. Natl. Acad. Sci. USA 91: 8797–8801 (1994)

    Article  PubMed  CAS  Google Scholar 

  24. Scheffner, M., U. Nuber, and J. Huibregtse. Protein ubiquitination involving an El-E2–E3 enzyme ubiquitin thioester cascade. Nature 373: 81–83 (1995)

    Article  PubMed  CAS  Google Scholar 

  25. Chowdary, D., J. Dermody, K. Jha, and H. Ozer. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol. Cell. Biol. 14: 1997–2003 (1994)

    PubMed  CAS  Google Scholar 

  26. Polyak, K., M. Kato, M. J. Solomon, C. J. Sherr, J. Massague, J. M. Roberts, and A. Koff. p27KiPl and Cy-clin D-Cdk4 are interacting regulators of Cdk2, and link TGF-β and contact inhibition to cell cycle arrest. Genes & Dev. 8: 9–22 (1994)

    Article  CAS  Google Scholar 

  27. Polyak, K., M. Lee, H. Erdjement-Bromage, A. Koff, J. Roberts, P. Tempst, and J. Massague. Cloning of p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 79: 59–66 (1994)

    Article  Google Scholar 

  28. Toyoshima, and T. Hunter. p27, a novel inhibitor of G1-cyclin-cdk protein kinase activity, is related to p21. Cell 78: 67–74 (1994)

    Article  Google Scholar 

  29. Nourse, J., E. Firpo, M. Flanagan, S. Coats, C. Polyak, M. Lee, J. Massague, G. Crabtree, and J. Roberts. Interleukin-2-mediated elimination of p27KiPl cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372: 570–573 (1994)

    Article  PubMed  CAS  Google Scholar 

  30. Kato, J., M. Matsuoka, K. Polyak, J. Massague, and C. J. Sherr. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27KiPl) of cyclin-dependent kinase-4 activation. Cell 79:487–496 (1994)

    Article  Google Scholar 

  31. Pagano, M., S. W. Tam, A. M. Theodbras, P. Romero-Beer, G. Del Sal, V. Chau, R. Yew, G. Draetta, and M. Rolfe. Role of the Ubiquitin-Proteasome pathway in regulating aboundance of the Cyclin-dependent kinase inhibitor p27. Science 269: 682–685 (1995)

    Article  PubMed  CAS  Google Scholar 

  32. Pietenpol, J., S. Bohlander, Y. Sato, N. Papadopoulos, B. Liu, C. Friedman, B. Trask, J. Roberts, K. Kinzler, J. Rowley, and B. Vogelstein. Assignment of the Human p27 KiPl Gene to 12p13 and Its Analysis in Leukemias. Cancer Research 55: 1206–1210 (1995)

    PubMed  CAS  Google Scholar 

  33. Ponce-Castañeda, V., M. Lee, E. Latres, K. Polyak, L. Lacombe, K. Montgomery, S. Mathew, K. Krauter, J. Sheinfeld, J. Massague, and C. Cordon-Cardo. p27 KiPl: Chromosomal Mapping to 12p12–12p13.1 and Absence of Mutations in Human Tumors. Cancer Research 55: 1211–1214 (1995)

    PubMed  Google Scholar 

  34. Barinaga, M. A new twist to the cell cycle. Science 269: 631–632 (1995)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pagano, M. et al. (1996). Targeting Ubiquitin-Mediated Degradation for Proliferation Inhibitors. In: Mihich, E., Housman, D. (eds) Cancer Genes. Pezcoller Foundation Symposia, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5895-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5895-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7704-7

  • Online ISBN: 978-1-4615-5895-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics