Skip to main content
  • 282 Accesses

Abstract

The physiology of exercise is a matter of transforming energy stored in the form of chemical compounds into mechanical energy. Hydrolysis of ATP is the immediate energy source but since the store of ATP is rather small it has to be replenished continuously. The breakdown of ATP to ADP and the rephosphorylation of ADP back to ATP constitutes the ATP-ADP cycle by which the energy consuming processes are coupled to the energy yielding processes (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, B., J. Bergström, L.-G. Ekelund, G. Guarnieri, R.C. Harris, E. Hultman, and L.-O. Nordesjö. Muscle metabolism during isometric exercise performed at constant force. J. Appl. Physiol 33: 224–228, 1972.

    PubMed  CAS  Google Scholar 

  2. Andersen, P., R.P. Adams, G. Sjögaard, A. Thorboe, and B. Saltin. Dynamic knee extension as model for study of isolated exercising muscle in humans. J. Appl. Physiol. 59: 1647–1653, 1985.

    PubMed  CAS  Google Scholar 

  3. Connett, R.J., and Sahlin K. Control of glycolysis and glycogen metabolism. In: Handbook of Physiology: Integration of Motor, Circulatory, Respiratory and Metabolic Control during Exercise, edited by L.B. Rowell and J.T. Shepherd. Bethesda, MD, USA: The American PhysiologicalSociety, In press.

    Google Scholar 

  4. Davies, C.T.M., and M.W. Thompson. Aerobic performance of female marathon and male ultramarathon athletes. Eur. J. Appl. Physiol. 41: 233–245, 1979.

    Article  CAS  Google Scholar 

  5. Fitts, R.H. Cellular mechanisms of muscular fatigue. Physiol. Rev. 74:49–94, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Hultman, E., and H. Sjöholm. Substrate availability. Biochem. Exer. 13:63–75, 1983.

    CAS  Google Scholar 

  7. Ivy, J.L., R.T. Withers, P.J. Van Handel, D.H. Elgers, and D.L. Costill. Muscle respiratory capacity and fiber type as determinants of lactate threshold. J. Appl.Physiol. 48: 523–527, 1980.

    PubMed  CAS  Google Scholar 

  8. Jones, N.K., N. McCartney, T. Graham, L.L. Spriet, J.M. Kowalchuk, G.J.F. Heigenhauser, and J.M. Sutton. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J. Appl. Physiol. 59: 132–136, 1985.

    PubMed  CAS  Google Scholar 

  9. McGilvery, R.W. The use of fuels for muscular work. In: Metabolic Adaptation to Prolonged Physical Exercise, edited by H. Howald and J.R. Poortmans. BAsel, Switzerland: Birkhäuser, 1973, pp. 12–30.

    Google Scholar 

  10. Sahlin, K., and S. Broberg. Adenine nucleotide depletion in human muscle during exercise: causality and significance of AMP deamination. Int. J. Sports Med. 11:S62–S67, 1990.

    Article  PubMed  Google Scholar 

  11. Sahlin, K., A. Katz, and S. Broberg. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 259: C834–C841, 1990.

    PubMed  CAS  Google Scholar 

  12. Saltin B., and Gollnick P.D. Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology. Skeletal Muscle, edited by L.D. Peachey, R.H. Adrian and S.R. Geiger. Bethesda. MD, USA: American Physiological Society, Bethesda, 1983, pp. 555–631.

    Google Scholar 

  13. Söderlund, K., and E. Hultman. ATP and phosphocreatine changes in single human muscle fibers after intense electrical stimulation. Am. J. Physiol. 261: E737–E741, 1991.

    PubMed  Google Scholar 

  14. Wibom, R., and E. Hultman. ATP production rate in mitochondria isolated from microsamples of human muscle. Am. J. Physiol. 259: E204–E209, 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sahlin, K. (1996). Energy Metabolism and Muscle Fatigue During Exercise. In: Steinacker, J.M., Ward, S.A. (eds) The Physiology and Pathophysiology of Exercise Tolerance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5887-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5887-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7700-9

  • Online ISBN: 978-1-4615-5887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics