Statistical Theory of Dynamical Diffraction in Crystals

  • Norio Kato
Part of the NATO ASI Series book series (NSSB, volume 357)

Abstract

Originally, the theory to be described below was initiated for a better understanding of extinction phenomena (Kato, 1976a, b). In the second stage (Kato, 1980a, b), it was aimed in addition at interpreting observations on the contrast and spacing of Pendellösung fringes in nearly perfect crystals. In order to explain the underlying physics, a brief historical review on classical extinction theories and on the fringe behaviour in homogeneously bent crystals will be given in the next section. Next, the basic concepts (coherence and incoherence of crystal waves) used in the present theory are explained and an outline of the theory is given. Sections 4 and 5 are devoted to more technical details.

Keywords

Perfect Crystal Acta Cryst Coherent Wave Differential Approach Coherent Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Haddad, M. & Becker, P.J., 1988, On the statistical dynamical theory of diffraction: Application to silicon, Acta Cryst. A, 44:262–270.CrossRefGoogle Scholar
  2. Becker, P.J. & Al Haddad, M., 1990, Diffraction by a randomly diffracted crystal. I. The case of short range order, Acta Cryst. A, 46:123–129.CrossRefGoogle Scholar
  3. Becker, P.J. & Al Haddad, M., 1992, Diffraction by a randomly diffracted crystal. II. General theory, Acta Cryst. A, 48:121–134.CrossRefGoogle Scholar
  4. Becker, P.J. & Coppens, P., 1974a, b,. Extinction within the limit of validity of the Darwin transfer equations. I. II., Acta Cryst. A, 30:129–147; 148–153.CrossRefGoogle Scholar
  5. Bushuev, V.A., 1989, Statistical-dynamical theory of diffraction of X rays in imperfect crystals with allowance for angular distribution of intensities, Sov. Phys. Crystallogr., 34(2): 163–167.Google Scholar
  6. Davis, T.J., 1992, A stochastic model for X-ray diffraction from imperfect crystals, Acta Cryst. A, 48:872–879.CrossRefGoogle Scholar
  7. Davis, T.J., 1994, Dynamical X-ray diffraction from imperfect crystals: A solution based on the Fokker-Planck equation, Acta Cryst. A, 50:224–231.CrossRefGoogle Scholar
  8. Hamilton, W.C., 1957, The effect of crystal shape and setting on secondary extinction, Acta Cryst., 10: 224–231.Google Scholar
  9. Holý, V., 1984, Dynamical X-ray diffraction from crystals with precipitates. I. Theory of the Bragg case, Acta Cryst. A, 40:675–679.CrossRefGoogle Scholar
  10. Holý, V. & Gabrielyan, K.T., 1987, Dyson and Bethe-Salpern equations for dynamical X-ray diffraction in crysstals with randomly placed defects, Phys. Stat. Soi. (b), 140:39–50.ADSCrossRefGoogle Scholar
  11. Guigay, J.P., 1989, On integrated intensities in Kato’s statistical diffraction theory, Acta Cryst.A, 45:241–244.CrossRefGoogle Scholar
  12. Guigay, J.P. & Chukhovskii, F.N., 1992, Reformulation of the dynamical theory of coherent wave propagation by randomly distorted crystals, Acta Cryst. A, 48:819–826.CrossRefGoogle Scholar
  13. Katagawa, T. & Kato, N., 1974, The exact dynamical wave fields for a crystal with a constant strain gradient on the basis of the Takagi-Taupin equations, Acta Cryst. A, 30:830–836.CrossRefGoogle Scholar
  14. Kato, N., 1961a, b, A theoretical study of Pendellösung fringes. Part I. II., Acta Cryst., 14:526–532; 627–636.CrossRefGoogle Scholar
  15. Kato, N., 1968a, b, Spherical-wave theory of dynamical X-ray diffraction for absorbing perfect crystals. I. II, J. Appl. Phys., 39:2225–2230; 2231–2237.ADSCrossRefGoogle Scholar
  16. Kato, N., 1976a, b, On extinction. I. II., Acta Cryst. A, 32, 453–457; 458–466.CrossRefGoogle Scholar
  17. Kato, N., 1980a, b, Statistical dynamical theory of crystal diffractin. I. II., Acta Cryst. A, 36:763–769; 770–778.CrossRefGoogle Scholar
  18. Kato, N., 1981, A new approach to extinction problems, Sov. Phys. Crystallogr., 26(5):536–539.Google Scholar
  19. Kato, N., 1991, A foundation for the statistical dynamical theory of diffraction, Acta Cryst. A, 471–11.Google Scholar
  20. Kato, N., 1994, Mathematical structure of the coherent wave field in the statistical theory of dynamical diffraction, Acta Cryst. A, 50:17–22.CrossRefGoogle Scholar
  21. Kulda, J., 1987, Random elastic deformation (RED) — An alternative model for extinction treatment in real crystal, Acta Cryst. A, 43:167–173.CrossRefGoogle Scholar
  22. Kulda, J.,1988a, b, The RED extinction model. I. II., Acta Cryst. A, 44,:283–285; 286–290.CrossRefGoogle Scholar
  23. Polyakov, A.M., Chukhovskii, F.N. & Piskunov, D.I., 1991, Dynamic scattering of X rays in real crystal, Sov. Phys JETP, 72(2):330–340.Google Scholar
  24. Punegov, V.I., 1990, Statistical-dynamic theory of diffraction of X-rays by crystals with lattice parameters which continuously change along the thickness, Sov. Phys. Crystallogr., 35(3):336–340.Google Scholar
  25. Sommerfeld, A.,1949, “Partial Differential Equation in Physics”, Academic Press, New York.Google Scholar
  26. Schneider, J.R., Bouchard, R., Graf, H.A. & Nagasawa, H., 1992, Experimental tests of the statistical dynamical theory, Acta Cryst. A, 48:804–819.CrossRefGoogle Scholar
  27. Takagi, S., 1962, Dynamical theory of diffraction applicable to crystals with any kind of small distortion, Acta Cryst., 15:1311–1312.CrossRefGoogle Scholar
  28. Takama, T. & Harima, H., 1994, Experimental verification of the statistical dynamical theories of diffraction, Acta Cryst. A, 50:239–246.CrossRefGoogle Scholar
  29. Taupin, D., 1964, Théorie dynamique de la diffraction des rayons X par les cristaux déformés, Bull. Soc. fr. Minéral. Cristallogr., 87:469–511.Google Scholar
  30. Wada, M. & Kato, N., 1977, The intensity distribution of X-ray Pendellösung fringes, Acta Cryst. A, 33: 161–168.CrossRefGoogle Scholar
  31. Werner, S.A., Berliner, R.R. & Arif, M., 1986, Mathematical methods in the solution of the Hamilton-Darwin and Takagi-Taupin equations, Physica B: 137:245–255.CrossRefGoogle Scholar
  32. Zachariasen, W.H., 1945, “Theory of X-Ray Diffraction in Crystals”, John Wiley, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Norio Kato
    • 1
  1. 1.Hoshigaoka IrisMeito-ku Meito-Honmachi, NagoyaJapan

Personalised recommendations