X-Ray Optical Beamline Design Principles

  • Michael Hart
Part of the NATO ASI Series book series (NSSB, volume 357)

Abstract

Beamline optics, as in the familiar visible part of the electromagnetic spectrum, have the dual functions of conditioning the beam quality and delivering photons with the necessary divergence and spatial extent at the sample from the source. In practice, the source characteristics are usually given and the specimen requirements are a variable from one experiment to another. Often, geometrical beamline optimization is simply not possible for a range of sample geometries so that specialized designs must evolve. Apart from the obvious parameter, flux, photon beams have a number of electromagnetic attributes such as energy (or wavelength), energy bandwidth (or monochromaticity), polarization state and time structure. All must be controlled to a degree determined by the experimental needs in the beamline.

Keywords

Synchrotron Radiation Method Phys Storage Ring Critical Angle Bragg Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batterman, B.W. and Berman, L. E., 1983, Sagittal focusing of sychrotron radiation, Nucl. Instrum. Methods Phys. Res. 208: 327–331ADSCrossRefGoogle Scholar
  2. Berman, L.E., Preserving the high source brightness with X-ray beamline optics, Rev. Sci. Instrum., 66:2041–2047 (1994)ADSCrossRefGoogle Scholar
  3. Berman, L.E. and Hart, M., 1991, Adaptive crystal optics for high power synchrotron sources, Nucl. Instrum. Methods Phys. Res., A302: 558–562ADSGoogle Scholar
  4. Berman, L.E. and M. Hart, 1991, Performance of water jet cooled silicon monochromators on a multipole wiggler beamline at NSLS, Nucl. Instrum. Methods Phys. Res., A300: 415–421ADSGoogle Scholar
  5. Berman, L.E., Hart, M. and Sharma, S., 1992, Adaptive crystal optics for undulator beamlines, Nucl. Instrum. Methods Phys. Res. A321: 617–628ADSGoogle Scholar
  6. U. Bilderback, D.H., 1986, The potential of cryogenic silicon and germanium X-ray monochromators for use with large synchrotron heat loads, Nucl. Instrum. Methods Phys. Res. A246: 434–436ADSGoogle Scholar
  7. Bonse, U. and Hart, M., 1965, Tailless X-ray single crystal reflection curves obtained by multiple reflection, Appl. Phys. Lett. 7: 238–240ADSCrossRefGoogle Scholar
  8. Cernik, R. and Hart, M., 1989, Medium power X-ray crystal optics for synchrotron radiation sources, Nucl. Instrum. Meth. A281: 403ADSGoogle Scholar
  9. Cullity, B.D., 1978, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, Second EditionGoogle Scholar
  10. Freund, A.K., 1995, Diamond single crystals: the ultimate monochromator material for high-power X-ray beams, Optical Engineering, 34: 432–440ADSCrossRefGoogle Scholar
  11. Habenschuss, A., Ice, G.E., Sparks, C.J. and Neiser, R. A., 1988, The ORNL beamline at the National Synchrotron Light Source: a Guide for Users, Nucl. Instrum. Methods Phys. Res. A266: 215–219ADSGoogle Scholar
  12. Hart, M., 1990, X-ray monochromators for high power synchrotron radiation sources, Nucl. Instrum. Methods Phys. Res., A297: 306–311ADSGoogle Scholar
  13. Henke B.L., Gullikson, E.M. and Davis, J.C., 1993, X-ray interactions: photoabsorption, scattering, transmissionand reflection at E=50-30000 eV, Z=l-92, Atomic Data and Nuclear Data Tables, 54: 181–342ADSCrossRefGoogle Scholar
  14. Henke, B.L., Gullikson, E.M. and Davis, J.C. at the following site on the world wide web:http://www-cxro.lbl.gov/optical_constants/Google Scholar
  15. Hubbell, J.H., 1969, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV, Nat. Stand. Ref. Data. Ser., Nat Bur. Stand. (U.S.), 29: 1–80Google Scholar
  16. Ice, G.E. and Sparks, C.J., 1993, Conical geometry for sagittal focusing as applied to X-rays from synchrotrons, Oak Ridge National Laboratory Report ORNL/TM-12327 June 1993 Google Scholar
  17. Ice, G.E. and Sparks, C.J., 1994, Conical geometry for sagittal focusing as applied to X-rays from synchrotrons, J. Opt. Soc Amer. 11: 1265–1271ADSCrossRefGoogle Scholar
  18. International Tables for X-ray Crystallography, 1968, pp 73–88, The Kynoch Press, BirminghamGoogle Scholar
  19. Iwazumi, T., Sato, M. and Kawata, H., 1992, Double-crystal monochromator for high-power and high-energy synchrotron radiation, Rev. Sci. Instrum., 63: 419–422ADSCrossRefGoogle Scholar
  20. Kirz, J., Attwood, D.I., Henke, B.L., Howells, M.R., Kennedy, K.D., Kim, Kwang-Je, Kortright, J.B., Perera, R.C., Pianetta, P., Riordian, J.C., Scofield, J.H., Stradling, G.L., Thompson, A.C., Underwood, J.H., Vaughan,D., Williams, G.P. and Winick, H., 1986 X-ray Data Book PUB-490 Rev. from Lawrence Berkeley LaboratoryGoogle Scholar
  21. Knapp, G. S., Ramanathan, M., Man, H.L., Macrander, A. T. and Mills, D. M., 1992, A simple sagittal focusing crystal which utilises a bimetallic strip, Rev. Sci. Instrum. 63: 465–467ADSCrossRefGoogle Scholar
  22. Kushnir, I., Quintana, J. P. and Georgopoulos, P., 1993, On the sagittal focusing of synchrotron radiation with double crystal monochromator, Nucl. Instrum. Methods Phys. Res., A328: 588–591ADSGoogle Scholar
  23. Matsushita, T., Ishikawa, T. and Oyanagi, H., 1986, Sagittally focusing double-crystal monochromator with constant exit beam height at the Photon Factory, Nucl. Instrum. Methods Phys. Res., A246: 377–379ADSGoogle Scholar
  24. Mills, D.M., Henderson, C. and Batterman, B.W., 1986, A fixed exit sagittal focusing monochromator utilizing bent single crystals, Nucl. Instrum. Methods Phys. Res., A246: 356–359ADSGoogle Scholar
  25. Murphy, J., 1993, Synchrotron Light source Data Book, BNL informal report #42333Google Scholar
  26. Nelmes, R.J. and McMahon, M.I., 1995, Ordered superstructure of InSb-IV, Phys. Rev. Lett., 74: 106–109ADSCrossRefGoogle Scholar
  27. Oyanagi, H., 1992, Adaptive silicon monochromators for high heat-load insertion devices, S. P. I. E. 19–24 July 1992, San Diego.Google Scholar
  28. Quintana, J.P. and Hart, M., 1995, Adaptive silicon monochromators for high power wigglers;Design, Finite Element analysis and Laboratory tests, J. Synchrotron Rad., 2: 119–123CrossRefGoogle Scholar
  29. Quintana, J.P., Hart, M., Bilderback, D., Henderson, C., Richter, D., Setterson, T., White, J., Hausermann, D., Krumrey, M. and Schulte-Schrepping, H., 1995, Adaptive silicon monochromators for high power insertion devices; tests at CHESS, ESRF and HASYLAB, J. Synchrotron Rad. 2: 1–5CrossRefGoogle Scholar
  30. Sparks, C.J., Jr., Borie, B.S. and Hastings, J. B., 1980, X-ray monochromator for focusing synchrotron above 10keV, Nucl. Instrum. Methods Phys. Res. 172: 237–42CrossRefGoogle Scholar
  31. Sparks, J., Jr., Ice, G. E., Wong J. and Batterman, B. W., 1982, Sagittal focusing of synchrotron x-radiation with curved crystals, Nucl. Instrum. Methods Phys. Res., 194: 73–78CrossRefGoogle Scholar
  32. Van Zuylen, P., Lemaire, A.D. and Wijsman, A.J.Th.M.A., 1988, Cooling of silicon crystals for X-ray monochromators, Report to ESRF Google Scholar
  33. Zontone, F. and Comin, F., 1992, Heat load and anticlastic effect compensation on an ESRF monochromator: An exhaustive ray-tracing study for a meridional-sagittal geometry, Rev. Sci. Instrum. 63:501–504ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael Hart
    • 1
  1. 1.Brookhaven National LaboratoryNational Synchrotron Light SourceLong IslandUSA

Personalised recommendations