Skip to main content

Determination of Reflection Phases by Three-Beam Diffraction

  • Chapter
X-Ray and Neutron Dynamical Diffraction

Part of the book series: NATO ASI Series ((NSSB,volume 357))

  • 1318 Accesses

Abstract

The basic idea how three-beam diffraction can be used for physical determination of phase relations originates from (1949). He proposed to exploit the diffracted intensity when two Bragg reflections are simultaneously excited. This situation is called three-beam diffraction since besides of the forwardly transmitted two additional diffracted rays, in total three strong rays, are simultaneously be propagated (cf. Figure 1). More generally, N-beam diffraction occurs when besides of the origin N-1 nodes of the reciprocal lattice lie very close to or on the Ewald sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bethe, H. A., 1928, Theorie der Beugung von Elektronen an Kristallen, Ann. Phys.(Leipzig) 87:55.

    ADS  Google Scholar 

  • Bijvoet, J. M., Peerdeman, A. F., and Bommel van, A. F., 1951, Determination of the absolute configuration of optically active compounds by means of X-ray, Nature (London) 168:271.

    Article  ADS  Google Scholar 

  • Boer de, J. L., 1993, private communication.

    Google Scholar 

  • Burzlaff, H. and Hümmer, K., 1988, On the ambiguities in merohedral crystal structures, Acta Cryst A44:506.

    Google Scholar 

  • Cahn, J. W., Shechtman, D., and Gratias, D., 1986, Indexing of icosahedral quasiperiodic crystals, J.Mater.Res. 1:13.

    Article  ADS  Google Scholar 

  • Chang, S. L., 1982, Direct determination of X-ray reflection phases, Phys.Rev.Lett. 48:163.

    Article  ADS  Google Scholar 

  • Chang, S. L., 1984, Multiple Diffraction of X-rays in Crystals, Springer Verlag, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  • Colella, R., 1974, Multiple diffraction of x-rays and the phase problem. computational procedures and comparison with experiment, Acta Cryst. A30:413.

    Google Scholar 

  • Ewald, P., 1917, Zur Begründung der Kristalloptik. III. Röntgenstrahlen, Ann. Phys. (Leipzig) 54:519.

    ADS  Google Scholar 

  • Ewald, P. P., 1965, Crystal optics for visible light and X-rays, Acta Cryst. 37:46.

    Google Scholar 

  • Ewald, P. P. and Heno, Y., 1968, X-ray diffraction in the case of three strong rays. I. Crystal composed of non-absorbing point atoms, Acta Cryst. A24:5.

    Google Scholar 

  • Hoier, R. and Marthinsen, K., 1983, Effective structure factors in many-beam X-ray diffraction — use of the second Bethe approximation, Acta Cryst. A39:854.

    Google Scholar 

  • Hümmer, K. and Billy, H., 1986, Experimental determination of triplet phase and enantiomorphs of non-centrosymmetric structures. I. Theoretical considerations, Acta Cryst A42:127.

    Google Scholar 

  • Hümmer, K., Schwegle, W., and Weckert, E., 1991, A feasibility study of experimental triplet-phase determination in small proteins, Acta Cryst. A47:60.

    Google Scholar 

  • Hümmer, K. and Weckert, E., 1995, Enantiomorphism and three-beam X-ray diffraction: determination of the absolute structure, Acta Cryst. A51:431.

    Google Scholar 

  • Hümmer, K., Weckert, E., and Bondza, H., 1990, Direct measurements of triplet phase relationships of organic non-centrosymmetric structures using synchrotron radiation, Acta Cryst. A46:393.

    Google Scholar 

  • Jones, P.-G., 1986, The determination of absolute structure. III. An ambiguity table for the non-centrosymmetric crystal classes, Acta Cryst. A42:57.

    Google Scholar 

  • Juretschke, H. J., 1982a, Invariant-phase information of X-ray structure factors in the two-beam Bragg intensity near a three-beam point, Phys.Rev.Lett. 48:1487.

    Article  ADS  Google Scholar 

  • Juretschke, H. J., 1982b, Non-centrosymmetric effects in the integrated two-beam Bragg intensity near a three-beam point, Phys.Lett. A92:183.

    ADS  Google Scholar 

  • Juretschke, H. J., 1984, Modified two-beam description of X-ray fields and intensities near a three-beam diffraction point. general formulation and first-order solution, Acta Cryst. A40:379.

    Google Scholar 

  • Kurinov, I. V. and Harrison, R. W., 1995, The influence of temperature on lysozyme crystals, structure and dynamics of protein and water, Acta Cryst. D51:98.

    Google Scholar 

  • Laue von, M., 1960, Röntgenstrahl-Interferenzen, Akademische Verlagsgesellschaft m. b. H., Frankfurt/Main.

    Google Scholar 

  • Lipscomb, W. N., 1949, Relative phases of diffraction maxima by multiple reflection, Acta Cryst. 2:193.

    Article  Google Scholar 

  • Mo, F., Hauback, B. C., and Thorkildsen, G., 1988, Physical estimation of X-ray triplet phases in a centrosymmetric, mosaic crysal with unit cell volume ~ 3000 Å3, Acta Chem. Scand. A42:130.

    Article  Google Scholar 

  • Moon, R. M. and Shull, C. G., 1964, The effects of simultaneous reflection on single-crystal neutron diffraction intensities, Acta Cryst. A17:805.

    Article  Google Scholar 

  • Renninger, M., 1937, Röntgenometrische Beiträge zur Kenntnis der Ladungsverteilung im Diamantgitter, Z Kristallogr. 97:107.

    Google Scholar 

  • Rogers, D., 1980, Definition of origin and enantiomorph and calculation of |E| values, in:Theory and Practice of Direct Methods in Crystallography, M. F. C. Ladd and R. A. Palmer, ed., Plenum Press, New York.

    Google Scholar 

  • Schutte, W. J. and Boer de, J. L., 1988, Valence fluctuations in the incommensurately modulated structure of calaverite AuTe2, Acta Cryst. B44:486.

    Google Scholar 

  • Shen, Q. and Colella, R., 1988, Phase observation in an organic crystal (benzil: C 14 H 10 O 2) using long-wavelength X-rays, Acta Cryst. A44:17.

    Google Scholar 

  • Tang, M. T. and Chang, S. L., 1988, Quantitative determination of phases of X-ray reflections from three-beam diffractions. II. Experiments for perfect crystals, Acta Cryst. A44:1073.

    Google Scholar 

  • Thorkildsen G 1987, Three-beam diffraction in a finite perfect crystal, Acta Cryst. A43:361.

    Google Scholar 

  • Weckert, E. and Hümmer, K., 1990, On the quantitative determination of triplet phases by X-ray three beam diffraction, Acta Cryst. A46:387.

    Google Scholar 

  • Weckert, E., Schwegle, W., and Hümmer, K., 1993, Direct phasing of macromolecular structures by three-beam diffraction, Proc. R. Soc. Lond. A 442:33.

    Article  ADS  Google Scholar 

  • Wolf de, P. M., Janssen, T., and Janner, A., 1981, The superspace groups for incommensurate crystal structures with a one-dimensional modulation, Acta Cryst. A37:625.

    Google Scholar 

  • Zachariasen, W. H., 1967, A general theory of X-ray diffraction in crystals, Acta Cryst. 23:558.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hümmer, K., Weckert, E. (1996). Determination of Reflection Phases by Three-Beam Diffraction. In: Authier, A., Lagomarsino, S., Tanner, B.K. (eds) X-Ray and Neutron Dynamical Diffraction. NATO ASI Series, vol 357. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5879-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5879-8_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7696-5

  • Online ISBN: 978-1-4615-5879-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics