Neutron Topography

  • Michel Schlenker
  • José Baruchel
Part of the NATO ASI Series book series (NSSB, volume 357)


Neutron diffraction imaging (hereafter called, following standard usage, neutron topography) is as closely related to X-ray topography as neutron diffraction is to X-ray diffraction. On the one hand the diffraction physics is nearly the same although neutrons have non-zero rest mass and, in the form under which they are used in diffraction (thermal neutrons, or nearly so), are non-relativistic, while the contrary applies for photons. The main orders of magnitude characterizing the processes are similar although the interactions are quite different. Thus, in principle, neutron topography is possible, and most of the features discussed in relation to X-ray topography in this volume are valid. On the other hand, just as neutrons, when discerningly used, are a valuable complement to X-rays for structural work, neutron topography has its own limitations, but also very special capabilities which make it worth while:
  1. (a)

    neutron beams are only available in large facilities, which for most researchers means away from the “home” laboratory

  2. (b)

    the available neutron fluxes are small even at a high-flux reactor and even when compared with laboratory X-ray generators (Scherm & Fåk, 1993),

  3. (c)

    absorption is negligible in most materials, and

  4. (d)

    magnetic scattering is a strong component.


This chapter will focus on these differences.


Domain Wall Neutron Diffraction Magnetic Domain Ferromagnetic Domain White Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alperin, H.A., Brown, P.J., Nathans, R., and Pickart, S.J., 1962. Polarized neutron study of antiferromagnetic domains in MnF2. Phys. Rev. Lett., 8: 237–239ADSCrossRefGoogle Scholar
  2. Ando, M., and Hosoya, S., 1972, Q-switch and polarization domains in antiferromagnetic chromium observed with neutron diffraction topography. Phys. Rev. Lett., 29: 281–285.ADSCrossRefGoogle Scholar
  3. Ando, M., and Hosoya, S., 1978, Size and behavior of antiferromagnetic domains in Cr directly observed with X-ray and neutron topography. J. Appl. Phys., 49: 6045–6051ADSCrossRefGoogle Scholar
  4. Baruchel, J., Schlenker, M., and Roth, W.L., 1977, Observation of antiferromagnetic domains in nickel oxide by neutron diffraction topography, J. Appl. Phys., 48: 5–8ADSCrossRefGoogle Scholar
  5. Baruchel, J., Schlenker, M., Zarka, A., and Petroff, J.F., 1978, Neutron diffraction topographic investigation of growth defects in natural lead carbonate single crystals. J. Cryst. Growth, 44: 356–362ADSCrossRefGoogle Scholar
  6. Baruchel, J., Schlenker, M., Kurosawa, K. and Saito, S., 1981, Antiferromagnetic S-domains in NiO: 1. Neutron magnetic topographic investigation, Phil. Mag. B, 43: 853–860; 2. Effect of crystallographic twinning on the visibility of domains by X-ray topography. Phil. Mag. B, 43, 861–868CrossRefGoogle Scholar
  7. Baruchel, J., Palmer, S.B. and Schlenker, M., 1981, Observation of chirality domains in terbium by plarized neutron diffraction topography. J. Physique, 42: 1279–1283CrossRefGoogle Scholar
  8. Baruchel J., Clark G., Tanner B.K. and Watts B.E., 1987, Neutron topographic investigation of the Morin transition in flux grown crystals of α-Fe2O3, J. Magn. Magn. Mat. 68: 374–378ADSCrossRefGoogle Scholar
  9. Baruchel, J., 1989, The contribution of neutron and synchrotron radiation topography to the investigation of first-order magnetic phase transitions. Phase Transitions, 14: 21–29.CrossRefGoogle Scholar
  10. Baruchel, J., Schlenker, M., and Palmer, S.B., 1990, Neutron diffraction topographic investigations of “exotic” magnetic domains. Nondestr. Test. Evalu., 5: 349–367ADSCrossRefGoogle Scholar
  11. Belanger, D.P., King, A.R. and Jaccarino, V., 1982, Random-field effects on critical behavior of diluted Ising antiferromagnets. Phys. Rev. Lett., 48: 1050–1053ADSCrossRefGoogle Scholar
  12. Boeuf, A., Lagomarsino, S., Rustichelli, F., Baruchel, J., and Schlenker, M., 1975. White beam neutron topography. Phys. Stat. Sol. a, 31: K91–K93 + platesADSCrossRefGoogle Scholar
  13. Bouillot J., Baruchel J., Remoissenet M., Joffrin J and Lajzerowicz J., 1982, Electric field related extinction reduction in diffraction experiments on alpha-LiI03, J. Physique, 43: 1259–1266CrossRefGoogle Scholar
  14. Davidson, J.B., and Case, A.L., 1976. Applications of the fly’s eye neutron camera: diffraction tomography and phase transition studies. Proc. Conf. on Neutron Scattering, ORNL, USERDA CONF 760601-P2: 1124–1135Google Scholar
  15. Davidson, J.B., Werner, S.A., and Arrott, A.S., 1974. Neutron microscopy of spin density wave domains in chromium. AIP Conference Proc., C.D. Graham, J.J. Rhyne, ed., 18: 396–400Google Scholar
  16. Doi, K., Minakawa, N., Motohashi, H., and Masaki, N., 1971. A trial of neutron diffraction topography. J. Appl. Cryst., 4: 528–530CrossRefGoogle Scholar
  17. Dudley, M., Baruchel, J., and Sherwood, J.N., 1990, Neutron topography as a tool for studying reactive organic crystals: a feasibility study. J. Appl. Cryst., 23: 186–198CrossRefGoogle Scholar
  18. El Kadiri M., Baruchel J., Rodriguez F., Moreno M. and Henry J.Y., 1986, Impurity related memeory effect of the antiferromagnetic domains in MnF2. J. Magn. Magn. Mat. 54–57: 853–854CrossRefGoogle Scholar
  19. Hustache, R., 1979. Selection de blocs monocristallins dans un cristal de beryllium par topographie neutronique. Nuel. Instr. and Meth. 163: 151–156ADSCrossRefGoogle Scholar
  20. International Tables for Crystallography, vol. C, 1992, Kluwer Academic Publishers, DordrechtGoogle Scholar
  21. Kikuta, S., Kohra, K., Minakawa, N. and Doi, K., 1971, An observation of neutron Pendellösung fringes in a wedge-shaped silicon single crystal, J. Phys. Soc. Jap., 31:954–955ADSCrossRefGoogle Scholar
  22. Klapper, H., 1987, X-ray topography of twinned crystals. Prog. Crystal Growth, 14: 367–401CrossRefGoogle Scholar
  23. Kvardakov, V.V., and Somenkov, V.A., 1991a, Neutron diffraction study of nonlinear magnetoacoustic effects in perfect crystals of FeBO3 and α-Fe2O3. J. Moscow Phys. Soc, 1:33–57Google Scholar
  24. Kvardakov, V.V., Sandonis, J., Podurets, K.M., Shilstein, S.Sh. znf Baruchel, J., 1991b, Study of the Morin transition in nearly perfect crystals of hematite by diffraction and topography, Physica B, 168: 242–250ADSCrossRefGoogle Scholar
  25. Kvardakov, V.V., Somenkov, V.A., Shil’shtein, S. Sh, 1992, Study of defects in cuprate single crystals by the neutron topography and selective etching methods. Superconductivity, 5: 623–629Google Scholar
  26. Malgrange, C., Petroff, J.F., Sauvage, M., Zarka, A., and Englander, M., 1976. Individual dislocation images and Pendellösung fringes in neutron topographs. Phil. Mag., 33: 743–751ADSCrossRefGoogle Scholar
  27. Michalec, R., Mikula, P., Sedláková, L., Chalupa, B., Zelenka, J., Petržilka, V., and Hrdlička, Z., 1975, Effects of thickness-shear vibrations on neutron diffraction by quartz single crystals. J. Appl. Cryst., 8: 345–351CrossRefGoogle Scholar
  28. Nakatani, S., Tomimitsu, H., Takahashi, T., and Kikuta, S., 1992, Phase shift of neutrons in magnetic domains observed by interferometry; Jpn. J. Appl Phys., 31: L1137–L1139ADSCrossRefGoogle Scholar
  29. Podurets, K.M., Sokol’skii, D.V., Chistyakov, R.R. and Shil’shtein, S. Sh., 1991, Reconstruction of the bulk domain structure of silicon iron single crystals from neutron refraction images of internal domain walls. Sov. Phys. Solid State, 33: 1668–1672Google Scholar
  30. Scherm, R. and Fåk, B., 1993, Neutrons, in Neutron and Synchrotron Radiation for Condensed Matter Studies, vol. 1: Theory, Instruments and Methods. HERCULES (Higher European Research Course for Users of Large Experimental Systems), Grenoble. J. Baruchel, J.L. Hodeau, M.S. Lehmann, J.R. Regnard, C. Schlenker, ed.. Les Editions de Physique, Les Ulis and Springer-Verlag, Heidelberg.Google Scholar
  31. Schlenker, M., and Shull, C.G., 1973, Polarized neutron techniques for the observation of ferromagnetic domains, J. Appl. Phys., 44: 4181–4184ADSCrossRefGoogle Scholar
  32. Schlenker, M., Baruchel, J., Pétroff, J.F. and Yelon, W.B., 1974, Observation of subgrain boundaries and dislocations by neutron diffraction topography Appl. Phys. Lett., 25: 382–384ADSCrossRefGoogle Scholar
  33. Schlenker, M., Baruchel, J., Perrier de la Bathie, R., and Wilson, S.A., 1975. Neutron diffraction section topography: observing crystal slices before cutting them. J. Appl. Phys., 46: 2845–2848ADSCrossRefGoogle Scholar
  34. Schlenker, M., Linares-Galvez, J., and Baruchel, J., 1978, A spin-related contrast effect: visibility of 180° ferromagnetic domain walls in unpolarized neutron diffraction topography, Phil. Mag. B, 37: 1–11CrossRefGoogle Scholar
  35. Schlenker, M., Bauspiess, W., Graeff, W., Bonse, U. and Rauch, H., 1980, Imaging of ferromagnetic domains by neutron interferometry. J. Magn. Magn. Mat., 15–18: 1507–1509CrossRefGoogle Scholar
  36. Shapira, Y., Oliveira, N.F., Jr. and Foner, S., 1984. Effects of random fields on the phase transitions and phase diagram of Mn0.75Zn0.25F2. Phys. Rev. B, 30: 6639–66489ADSCrossRefGoogle Scholar
  37. Sillou, D., Baruchel, J., Kuroda, K., Michalowicz, A., Guigay, J.P., and Schlenker, M., 1989, First experiments on flipping ratio mapping with the “multi-PM” position-sensitive detector. Physica B, 156–157:581–583CrossRefGoogle Scholar
  38. Siratori, K., 1994, Magneto-electric effect and solid state physics, Ferroelectrics, 161: 29–41CrossRefGoogle Scholar
  39. Tomimitsu, H., and Doi, K., 1974, A neutron diffraction topographic observation of strain field in a hot-pressed germanium crystal. J. Appl. Cryst., 7: 59–64CrossRefGoogle Scholar
  40. Tomimitsu, H., and Zeyen, C., 1978, Neutron diffraction topographic observation of twinned silicon crystal. Jap. J. Appl. Phys., 3: 591–592ADSCrossRefGoogle Scholar
  41. Tomimitsu, H., Doi, K., and Kamada, K., 1983, Neutron diffraction topographic observations of substructures in Cu-based alloys. Physica, 120B: 96–102Google Scholar
  42. Withers, P.J., Harris, I.B., Edwards, L., Wang, D.Q., Johnson, M.W., Priesmeyer, H., Larsen, J. and Rustichelli, F., 1994. ENGIN — a neutron spectrometer for internal stress measurement in engineering structures, in EEC Conference on Lightweight Structures, p.75–80, Noordwijk, ESA WPP 070Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michel Schlenker
    • 1
  • José Baruchel
    • 2
  1. 1.Laboratoire Louis Néel du CNRS, associé à l’UJFGrenobleFrance
  2. 2.ESRFGrenobleFrance

Personalised recommendations