Skip to main content

Aspirin Switches Biosynthetic Circuits Triggering Novel Eicosanoids during Cell-Cell Interactions that Are Potent Inhibitors of Neutrophil Migration and Tumor Cell Proliferation

  • Chapter
Frontiers in Bioactive Lipids

Abstract

Aspirin [acetylsalicylic acid (ASA)] is the lead nonsteroidal drug (NSAID) and is widely used to relieve inflammation.1, 2 Recent results indicate that its use in low doses is also associated with new, previously unappreciated beneficial effects, including reduced risk of heart disease3 and decreased incidence of lung, colon and breast cancer,4 and in vitro it can inhibit nuclear factor-κB transcription, which may be relevant in treatment of patients with human immunodeficiency virus.5 ASA’s target is the cyclooxygenase activity of prostaglandin G/H synthase (PGHS). It does not inhibit the lipoxygenases (LOs).6-8 Although blockage of PGs and TXs can account for many of ASA’s pharmacologic properties, the mechanism of action of this important drug in several clinical settings including lowering the risk of human cancer is still a subject of interest and debate. 1, 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Weissmann, Aspirin, Sci. Am. 264:84 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. R.J. Flower, Cyclooxygenase inhibitors: an overview, in: Prostaglandins, Leukotrienes and Lipoxins: Biochemistry, Mechanism of Action, and Clinical Applications, J.M. Bailey, ed., Plenum, New York (1985).

    Google Scholar 

  3. Steering Committee of the Physicians’ Health Study Research Group, Final report on the aspirin component of the ongoing Physicians’ Health Study, N. Engl. J. Med. 321:129 (1989).

    Article  Google Scholar 

  4. D.M. Schreinemachers and R.B. Everson, Aspirin use and lung, colon, and breast cancer incidence in a prospective study, Epidemiology 5:138 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. E. Kopp and S. Ghosh, Inhibition of NF-κB by sodium salicylate and aspirin, Science 265:956 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. J.R. Vane, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nature (London) New Biol. 231:232 (1971).

    CAS  Google Scholar 

  7. B. Samuelsson, From studies of biochemical mechanisms to novel biological mediators: prostaglandin endoperoxides, thromboxanes and leukotrienes, in: Les Prix Nobel: Nobel Prizes, Presentations, Biographies and Lecturesi Almqvist & Wiksell, Stockholm (1982).

    Google Scholar 

  8. J.R. Vane, Adventures and excursions in bioassay: the stepping stones to prostacyclin, in: Les Prix Nobel: Nobel Prizes, Presentations, Biographies and Lectures, Almqvist & Wiksell, Stockholm (1982).

    Google Scholar 

  9. A.J. Marcus and D.P. Hajjar, Vascular transcellular signaling, J. Lipid Res. 34:2017 (1993).

    PubMed  CAS  Google Scholar 

  10. C.N. Serhan, Lipoxin biosynthesis and its impact in inflammatory and vascular events, Biochim. Biophys. Acta 1212:1 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. S.P. Colgan, C.N. Serhan, C.A. Parkos, C. Delp-Archer, and J.L. Madara, Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers, J. Clin. Invest. 92:75 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. A. Papayianni, C.N. Serhan, and H.R. Brady, Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells, J. Immunol. 156:2264 (1996).

    PubMed  CAS  Google Scholar 

  13. T.H. Lee, C.E. Horton, U. Kyan-Aung, D. Haskard, A.E. Crea, and B.W. Spur, Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine, Clin. Sci. 77:195 (1989).

    PubMed  CAS  Google Scholar 

  14. O. Soyombo, B.W. Spur, and T.H. Lee, Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet-activating factor and N-formyl-L-methionyl-L-leucyl-L-phenylalanine, Allergy 49:230 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. J. Raud, U. Palmertz, S.E. Dahlén, and P. Hedqvist, Lipoxins inhibit micro vascular inflammatory actions of leukotriene B4, Adv. Exp. Med. Biol. 314:185 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. T.M. Carlos and J.M. Harlan, Leukocyte-endothelial adhesion molecules, Blood 84:2068 (1994).

    PubMed  CAS  Google Scholar 

  17. H.R. Brady and C.N. Serhan, Adhesion promotes transcellular leukotriene biosynthesis during neutrophil-glomerular endothelial cell interactions: inhibition by antibodies against CD 18 and L-selection, Biochem. Biophys. Res. Commun. 186:1307 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. H.-E. Claesson and J. Haeggström, Human endothelial cells stimulate leukotriene synthesis and convert granulocyte released leukotriene A4 into leukotrienes B4, C4, D4 and E4, Eur. J. Biochem. 173:93 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. D.A. Brezinski, R.W. Nesto, and C.N. Serhan, Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy, Circulation 86:56 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. J. Clàr ia, M.H. Lee, and C.N. Serhan, Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation, Mol. Med., submitted.

    Google Scholar 

  21. K.C. Nicolaou, J.Y. Ramphal, N.A. Petasis, and C.N. Serhan, Lipoxins and related eicosanoids: biosynthesis, biological properties, and chemical synthesis, Angew. Chem. Int. Ed. Engl. 30:1100 (1991).

    Article  Google Scholar 

  22. J. Clària and C.N. Serhan, Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions, Proc. Natl. Acad. Sci. USA 92:9475 (1995).

    Article  PubMed  Google Scholar 

  23. C.N. Serhan, J.F. Maddox, N.A. Petasis, I. Akritopoulou-Zanze, A. Papayianni, H.R. Brady, S.P. Colgan, and J.L. Madara, Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils, Biochemistry 34:14609 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. A.J. Marcus, Aspirin as prophylaxis against colorectal cancer, N. Engl. J. Med. 333:656 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. L.J. Marnett, Aspirin and the potential role of prostaglandins in colon cancer, Cancer Res. 52:5575 (1992).

    PubMed  CAS  Google Scholar 

  26. L. Baud, J. Sraer, J. Perez, M.-P. Nivez, and R. Ardaillou, Leukotriene C4 binds to human glomerular epithelial cells and promotes their proliferation in vitro, J. Clin. Invest. 76:374 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. L. Stenke, P. Reizenstein, and J.Å. Lindgren, Leukotrienes and lipoxins—new potential performers in the regulation of human myelopoiesis, Leukemia Res. 18:727 (1994).

    Article  CAS  Google Scholar 

  28. M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Czerwinski, D.L. Fine, B.J. Abbott, J.G. Mayo, R.H. Shoemaker, and M.R. Boyd, Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay, Cancer Res. 48:589 (1988).

    PubMed  CAS  Google Scholar 

  29. J.D. Croxtall and R.J. Flower, Lipocortin 1 mediates dexamethasone-induced growth arrest of the A549 lung adenocarcinoma cell line, Proc. Natl. Acad. Sci. USA 89:3571 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Serhan, C.N., Clària, J. (1996). Aspirin Switches Biosynthetic Circuits Triggering Novel Eicosanoids during Cell-Cell Interactions that Are Potent Inhibitors of Neutrophil Migration and Tumor Cell Proliferation. In: Vanderhoek, J.Y. (eds) Frontiers in Bioactive Lipids. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5875-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5875-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7694-1

  • Online ISBN: 978-1-4615-5875-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics