Skip to main content

Dual Regulatory Role of Cyclooxygenase and Lipoxygenase and their Products in Cell Survival and Apoptosis

  • Chapter
Frontiers in Bioactive Lipids

Abstract

Aoptosis, or programmed cell death, is a genetically encoded cell suicide program defined by characteristic morphologic, biochemical, and molecular changes resulting in nonpathologic cell loss. A large number of distinct cellular phenotypes set apoptosis apart from another cell death process, i.e., necrosis.1,2 Apoptosis plays a key role in physiological processes such as embryonic development, maturation of the host immune system, and in maintaining tissue and organ homeostasis. Apoptosis has also been implicated in a variety of pathological conditions exemplified by cardiac infarction, atherosclerosis, Alzeimer’s disease and other neurodegenic diseases, HIV, tumorigenesis and tumor progression. A multitude of factors have been implicated in regulating/modulating apoptosis; these include: (i) oncogenes/tumor suppressor genes exemplified by p53, bcl-2 family (bcl-2, bcl-XL, bcl-Xb, bcl-XS, bax, BAG-1, bad, bak, Al, Mcl-1), myc, ras, abl, raf, Rb-1, and Waf-1; (ii) growth factor/growth factor receptors represented by NGF/NGF receptor, TNF-α/Fas, TGF-β/TGF receptor, IGF-1/IGF receptor, and PDGF/PDGF receptor; (iii) intracellular signal transducers such as protein kinase C, tyrosine kinases and protein phosphatases, lipid signaling molecules such as ceramide, and Ca2+; (iv) cell cycle regulators exemplified by cdc-2 and E2F; (v) reactive oxygen species; (vi) extracellular matrix regulators/signal transducers (extracellular matrix proteins such as fibronectin and transmembrane integrin receptors); (vii) specific endonucleases such as Ca2+- and Mg2+-dependent DNase; and (viii) cytoplasmic proteases typified by ICE (interleukin 1-converting enzyme) family.1-10 The major impact of apoptosis on cancer research is manifested primarily in three areas: oncogenesis, tumor homeostasis, and the mechanism of action of cytotoxic antitumor drugs.11 Most anti-tumor agents such as radiation (by generating oxygen radicals) and chemotherapeutic drugs kill tumor cells by inducing apoptosis. Likewise, development by tumor cells of resistance to these treatments is mostly a result of loss of response to apoptosis induction.1-11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Majno, and I. Joris. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146:3(1995).

    PubMed  CAS  Google Scholar 

  2. Z.N. Oltvai, and S.J. Korsmeyer. Checkpoints of dueling dimers foil death wishes. Cell 79:189 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. B.F. Trump, and I.K. Berezesky. Calcium-mediated cell injury and cell death. FASEB J. 9:219 (1995).

    PubMed  CAS  Google Scholar 

  4. S.J. Korsmeyer, X.M. Yin, Z.N. Oltvai, D.J. Veis-Novack, and G.P. Linette. Reactive oxygen species and the regulation of cell death by the bcl-2 gene family. Biochim. Biophys. Acta 1271:63 (1995).

    Article  PubMed  Google Scholar 

  5. S.J. Martin, and D.R. Green. Protease activation during apoptosis: Death by a thousand cuts? Cell 82:349 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. D.M. Hockenbery. Bcl-2, a novel regulator of cell death. Bioessays 17:631 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. G. Kroemer, P. Petit, N. Zamzami, J. Vayssiere, and B. Mignotte. The biochemistry of programmed cell death. FASEB J. 9:1277 (1995).

    PubMed  CAS  Google Scholar 

  8. S. Cory. Regulation og lymphocyte survival by the bcl-2 gene family. Annu. Rev. Immunol. 13:513(1995).

    Article  PubMed  CAS  Google Scholar 

  9. R. Rubin, and R. Baserga. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab. Invest. 73:311 (1995).

    PubMed  CAS  Google Scholar 

  10. E. Ruoslahti, and J. Reed. Anchorage dependence, integrins, and apoptosis. Cell 77:477 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. B. W. Stewart. Mechanisms of apoptosis: Integration of genetic, biochemical, and cellular indicators. J. Natl. Cancer Inst. 86:1286 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. J-W. Han, F. McCormick, and I.G. Macara. Regulation of Ras-GAP and neurofibromatosis-1 gene product by eicosanoids. Science 252:576 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. G.E. Hannigan, and B.R. Williams. Signal transduction by interferon-α through arachidonic acid metabolism. Science 251:204 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. M. P. Peppelenbosch, L. G.J. Tertoolen, W.J. Hage, and S.W. de Laat. Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products. Cell 74:565 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. D.G. Tang, I.M. Grossi, K.Q. Tang, C.A. Diglio, and K.V. Honn. Inhibition of TPA and 12(S)-HETE-stimulated tumor cell adhesion by prostacyclin and its stable analogs: Rationale for their antimetastatic effects. Int. J. Cancer 60:418 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. D.G. Tang, Y.Q. Chen, C.A. Diglio, and K.V. Honn. PKC-dependent effects of 12(S)-HETE on endothelial cell vitronectin and fibronectin receptor. J. Cell Biol. 121:689 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. G.N. Rao, A.S. Baas, W.C. Glasgow, T.E. Eling, M.S. Runge, and W.R. Alexander. Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J. Biol. Chem. 269, 32586–32591, (1994).

    PubMed  CAS  Google Scholar 

  18. U. Danesch, P.C. Weber, and A. Sellmayer. Arachidnoic acid increases c-fos and Egr-1 mRNA in 3T3 fibroblasts by formation of prostaglandin E2 and activation of protein kinase C. J. Biol. Chem. 269:27258 (1994).

    PubMed  CAS  Google Scholar 

  19. R.D. Nolan, R.M. Danilowicz, and T.E. Eling. Role of arachidonic acid metabolism in the mitogenic response of BALB/c 3T3 fibroblasts to epidermal growth factor. Mol. Pharmacol. 33:650 (1988).

    PubMed  CAS  Google Scholar 

  20. J.M. Bailey, R.W. Bryant, C.E. Low, M.B. Papillo, and J.Y. Vanderhoeck. Regulation of T-lymphocyte mitogenesis by the leukocyte product 15-hydroxy-eicosatetraenoic acid (15-HETE). Cell Immunol. 67:112 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. C. Chan, E. Duhamel, and A. Ford-Hutchinson, A. Leukotriene B4 and 12-hydroxyeicosatetraenoic acid stimulates epidermal proliferation in vivo in the guinea pig. J. Invest. Dermatol. 85:333 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. K. Kragballe, and J.D. Fallon. Increased aggregation and arachidonic acid transformation by psoriatic platelets: evidence that platelet-derived 12-hydoxy-eicosatetraenoic acid increases keratinocyte DNA synthesis in vitro. Arch. Dermatol. Res. 278:449 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. G.K. Bandyopadhyay, W. Imagawa, D.R. Wallace, and S.J. Nandi. Proliferative effectors of insulin and epidermal growth factor on mouse mammary epithelial cells in primary culture. Enhancement by hydroxyeicosatetraenoic acids and synergism with prostaglandin E2. J. Biol. Chem. 263:7567 (1988).

    PubMed  CAS  Google Scholar 

  24. B.N. Yamaja Setty, J.E. Graeber, and M.J. Stuart. The mitogenic effect of 15-and 12-hydroxyeicosatetraenoic acid on the endothelial cells may be mediated via diacylglycerol kinase inhibition. J. Biol. Chem. 262:17613 (1987).

    PubMed  CAS  Google Scholar 

  25. D.G. Tang, C Renaud, S. Stojakovic, C.A. Diglio, A. Porter, and K.V. Honn. 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: Its potential role in angiogenesis. Biochem. Biophys. Res. Commun. 211:462 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. K.V. Honn, D.G. Tang, X. Gao, I.A. Butovich, B. Liu, J. Timar, and W. Hagmann. 12-Lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev. 13:365 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. D.G. Tang, and K.V. Honn. 12-Lipoxygenase, 12(S)-HETE, and cancer metastasis. Annals New York Acad Sci. 744:199 (1994).

    Article  CAS  Google Scholar 

  28. C.D. Funk. Molecular biology in the eicosanoid field.Nucleic Acid Res. Mol. Biol. 45:67 (1993).

    Article  CAS  Google Scholar 

  29. J. Freire-Moar, A. Alavi-Nassab, M. Ng, M. Mulkins, and E. Sigal. Cloning and characterization of a murine macrophage lipoxygenase. Biochim. Biophys. Acta 1254:112(1995).

    Article  PubMed  Google Scholar 

  30. A. Mastino, M. Piacentini, and S. Grelli. Induction of apoptosis in thymocytes by prostaglandin E2 in vivo. Develop Immunol. 2:263 (1992).

    Article  CAS  Google Scholar 

  31. F. Pica, O. Franzese, C. D’Onofrio, L. Paganini, C Favalli, E. Bonmassar, and E. Garaci. Effect of PGE2 on c-myc and Bcl-2 production and programmed cell death in human lymphocytes. Adv. Prostaglandin Thromboxane Leukotriene Res. 23:457 (1995).

    Google Scholar 

  32. D.M. Brown, G.L. Warner, J.E. Ales-Martinez, D.W. Scott, and R.P. Phipps. Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clin. Immuno. Immunopathol. 63:221 (1992).

    Article  CAS  Google Scholar 

  33. A. Mastino, S. Grelli, M. Piacentini, S. Oliverio, C. Favalli, CF. Perno, and E. Garci. Correlation between induction of lymphocyte apoptosis and prostaglandin E2 production by macrophages infected with HIV. Cell Immunol. 152:120(1993).

    Article  PubMed  CAS  Google Scholar 

  34. R.C. Ackerman, and W.J. Murdoch. Prostaglandin-induced apoptosis of ovarian surface epithelial cells. Prostaglandins 45:475 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. D.J. McConkey, S. Orrenius, and M. Jondal. Agents that elevate cAMP stimulate DNA fragmentation in thymocytes. J. Immunol. 145: 1227 (1990).

    PubMed  CAS  Google Scholar 

  36. I. Kim, J.W. Lee, H-W. Sohn, H-S. Kim, and S-H. Kim. Prostaglandin A2 and Δ12-prostaglandin J2 induce apoptosis in L1210 cells. FEBS Lett. 321:209 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. F. Ushikubi, Y. Aiba, K. Nakamura, T. Namba, M. Hirata, O. Mazda, Y. Katsura, and S. Narumiya. Thromboxane Ai2 receptor is highly expressed in mouse immature thymocytes and mediates DNA fragmentation and apoptosis. J. Exp. Med. 178:1825 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. E.J. Goetzl, S. An, and L. Zheng. Specific suppression by prostaglandin E2 of activation-induced apoptosis of human CD4+8+ T lymphoblasts. J. Immunol. 154:1041 (1995).

    PubMed  CAS  Google Scholar 

  39. E.J. Goetzel, S. An, and W.J. Smith. Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J. 9:1051 (1995).

    Google Scholar 

  40. X. Lu, W. Xie, D. Reed, W.S. Bradshaw, and D.L. Simmons. Nonsteroidal antiinflammatory drugs cause apoptosis and induce cyclooxygenases in chicken embryo fibroblasts. Proc. Natl. Acad. Scid. USA 92:7961 (1995).

    Article  CAS  Google Scholar 

  41. G.A. Piazza, A.L.K. Rahm, M. Krutzsch, G. Speri, N.S. Paranka, P.H. Gross, K. Brendel, R.W. Burt, D.S. Alberts, R. Pamukcu, and D.J. Ahnen. Antineoplastic drugs sulindac sulfide and sulphone inhibit cell growth by inducing apoptosis. Cancer Res. 55:3110(1995).

    PubMed  CAS  Google Scholar 

  42. S.J. Shiff, L. Qiao, L-L. Tsai, and B. Rigas. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J. Clin. Invest. 96:491 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. M. Tsujii, and R. DuBois. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endopeorxide synthase 2. Cell 83:493 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. P.A. Sandtrom, P.W. Tebbey, S. Van Cleave, and T.M. Buttke. Lipid hydroperoxides induce apoptosis in T cells displaying a HIV-associated glutathione peroxidase deficiency. J. Biol. Chem. 269:798 (1994).

    Google Scholar 

  45. V.B. O’Donnell, S. Spycher, and A. Azzi. Involvement of oxidants and oxidantgenerating enzyme(s) in tumor-necrosis-factor-a-mediated apoptosis: role for lipoxygenase pathway but not mitochondrial respiratory chain. Biochem. J. 310:133 (1995).

    PubMed  Google Scholar 

  46. K.M. Anderson, J. Levin, A. Jejah, T. Seed, and J.E. Harris. Induction of apoptosis in blood cells from a patient with acute myelogenous leukemia by SC41661, a selective inhibitor of 5-lipoxygenase. Prostaglandin Leukotriene Essen. Fat. Acid 48, 323–326 (1993).

    Article  CAS  Google Scholar 

  47. I.M. Avis, M. Jett, T. Boyle, M.D. Vos, T. Moody, A.M. Treston, A. Martinez, and J.L. Mulshine. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J. Clin. Invest. 97:806 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. D.G. Tang, Y.Q. Chen, and K.V. Honn. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc. Natl. Acad. Sci. USA. 1996, in press.

    Google Scholar 

  49. B. Liu, J. Timar, J. Howlett, C.A. Diglio, and K.V. Honn. Lipoxygenase metabolite of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C. Cell Regul. 2:1045 (1991).

    PubMed  CAS  Google Scholar 

  50. Y.Q. Chen, Z.M. Duniec, B. Liu, W. Hagmann, X. Gao, K. Shimoji, LJ. Marnett, C.R. Johnson, and K.V. Honn. Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Res. 54:1574 (1994).

    PubMed  CAS  Google Scholar 

  51. D.G. Tang, and K.V. Honn Tumor cell apoptosis induced by NDGA, a lipoxygenase inhibitor, involves lipid peroxidation and depletion of GSH. Sumitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tang, D.G., Taylor, J.D., Porter, A.T., Honn, K.V. (1996). Dual Regulatory Role of Cyclooxygenase and Lipoxygenase and their Products in Cell Survival and Apoptosis. In: Vanderhoek, J.Y. (eds) Frontiers in Bioactive Lipids. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5875-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5875-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7694-1

  • Online ISBN: 978-1-4615-5875-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics