Skip to main content

Aldehyde Reductase

Catalytic Mechanism and Substrate Recognition

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 6

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 414))

Abstract

Aldehyde reductase is a member of a superfamily of NADPH-dependent aldo-keto reductases, which comprises well over 30 different proteins in seven subfamilies. The enzymes of this superfamily are monomeric proteins with the molecular weight between 30 and 40 kDa. They are characterized by a broad substrate specificity and a great preference of the reduction reaction. They share many common structural and functional characteristics, namely an α/β barrel tertiary structure, a NADPH cofactor which is enfolded by a mobile loop that varies among the different members, and an active site located at the C-terminus of the barrel (Wilson et al., 1992, Harrison et al., 1994, El-Kabbani et al., 1995). The physiological role(s) of these enzymes have not yet been completely established but many are thought to be involved in general detoxification of reactive aldehydes (Bachur, 1976). More specific functions were found for some members, e.g., osmoregulation within the renal tubular cells (aldose reductase; Garcia-Perez and Burg, 1991) or bile acids metabolism (bile acid binders; Stolz et al., 1995). The most studied member of this protein family, aldose reductase, is implicated in the pathogenesis of certain diabetic complications (Gabbay, 1973; Dvornik, 1987; Kador, 1988). Aldehyde and aldose reductase differ significantly in their substrate specificity and tissue distribution (Davidson et al., 1977; Wermuth, 1982), and despite similar kinetic mechanisms, there are differences in the function of the two enzymes that are not yet understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachur, N.R.: Cytoplasmic aldo-keto reductases: a class of drug metabolizing enzymes. Science 193 (1976) 595–597.

    Article  PubMed  CAS  Google Scholar 

  • Barski, O.A., Gabbay, K.H., and Bohren, K.M.: The C-terminal loop of aldehyde reductase determines substrate and inhibitor specificity. Submitted for publication.

    Google Scholar 

  • Barski, O.A., Gabbay, K.H., Grimshaw, C.E., Bohren, K.M.: Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry 34 (1995) 11264–11275.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar, A., Liu, S.-Q., and Srivastava, S.K.: Structure-activity correlations in human kidney aldehyde reductase-catalyzed reduction of para-substituted benzaldehyde by 3-acetyl pyridine adenine dinucleotide phosphate. Biochim. et Biophys. Acta 1077 (1991) 180–186.

    Article  CAS  Google Scholar 

  • Boghosian, R.A., & McGuinness, E.T.: Pig brain aldose reductase: a kinetic study using the centrifugal fast analyzer. Int. J. Biochem. 13 (1981) 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Bohren, K.M., Grimshaw, C.E., and Gabbay, K.H.: Catalytic effectiveness of human aldose reductase. J. Biol. Chem. 267 (1992) 20965–20970.

    PubMed  CAS  Google Scholar 

  • Bohren, K. M., Grimshaw, C. E., Lai, C.-J., Harrison, D. H., Ringe, D., Petsko, G. A., & Gabbay, K. H.: Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33 (1994) 2021–2032.

    Article  PubMed  CAS  Google Scholar 

  • Bohren, K.M., Bullock, B., Wermuth, B., & Gabbay, K.H.: The aldo-keto reductase superfamily. J. Biol. Chem. 264 (1989) 9547–9551.

    PubMed  CAS  Google Scholar 

  • Branlant, G., and Biellmann, J-F.: Purification and some properties of aldehyde reductases from pig liver. Eur. J. Biochem. 105 (1980) 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Branlant, G.: Properties of an aldose reductase from pig lens. Eur. J. Biochem. 129 (1982b) 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Branlant, G.: The substrate binding site of aldehyde reductase from pig liver. Eur. J. Biochem. 121 (1982a) 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, W. S. & Flynn T. G.: Kinetics and mechanism of action of aldehyde reductase from pig kidney. Biochem. J. 177 (1979) 595–601.

    PubMed  CAS  Google Scholar 

  • Davidson, W. S., Walton, D. J., & Flynn, T. G.: A comparative study of the tissue and species distribution of NADPH-dependent aldehyde reductase. Comp. Biochem. Physiol. 60B (1978) 309–315.

    CAS  Google Scholar 

  • De Winter H.L., and von Itzstein M.: Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme. Biochemistry 34 (1995) 8299–308.

    Article  PubMed  Google Scholar 

  • Dvornik, D (1987) Aldose reductase inhibition. An approach to the prevention of diabetic complications. (Port, D. ed. Biomedical Information Corporation, McGraw-Hill New York)

    Google Scholar 

  • Ehrig, T., Bohren, K.M., Prendergast, F.G., & Gabbay, K.H.: Mechanism of aldose reductase inhibition: binding of NADP+/NADPH and alrestatin-like inhibitors. Biochemistry 33 (1994) 7157–7165.

    Article  PubMed  CAS  Google Scholar 

  • El-Kabbani, O., Judge, K., Ginell, S.L., Myles, D.A.A., Delucas, L.J., and Flynn, T.G.: Structure of porcine aldehyde reductase holoenzyme. Nature Structural Biology 2 (1995) 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, T.G., Shires, J., and Walton, D.J.: Properties of the NADP-dependent aldehyde reductase from pig kidney. J. Biol. Chem. 250 (1975) 2933–2940.

    PubMed  CAS  Google Scholar 

  • Gabbay, K.H.: The sorbitol pathway and the complications of diabetes. N. Engl. J. Med. 288 (1973) 831–836.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Perez, A., & Burg M.B.: Renal medullary organic osmolytes. Physiol. Rev. 71 (1991) 1081–1115.

    PubMed  CAS  Google Scholar 

  • Grimshaw C.E., Bohren K.M., Lai C.J., and Gabbay K.H.: Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition. Biochemistry 34 (1995) 14374–84.

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw, C.E., Bohren, K.M., Lai, C-J., and Gabbay, K.H.: Human aldose reductase: rate constants for a mechanism including interconversion of ternary complexes by recombinant wild-type enzyme. Biochemistry 34 (1995) 14356–14365.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D. H., Bohren, K. M., Ringe, D., Petsko, G. A. & Gabbay, K. H.: An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodilate, and glucose 6-phosphate. Biochemistry 33 (1994) 2011–2020.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D.H.T.: All in the family. Nature Struct. Biol. 2 (1995) 719–720.

    Article  PubMed  CAS  Google Scholar 

  • Kador, P.F.: The role of aldose reductase in the development of diabetic complications. Med. Res. Rev. 8 (1988) 325–352.

    Article  PubMed  CAS  Google Scholar 

  • Mano, Y., Suzuki, K., Yamada, K., and Shimazono, N.: Enzymic studies on TPN L-hexonate dehydrogenase from rat liver. J. Biochem. 49 (1961) 618–634.

    PubMed  CAS  Google Scholar 

  • Northrop, D.B.: Steady-state analysis of kinetic isotope effects in enzymic reactions. Biochemistry 14 (1975) 2644–2650.

    Article  PubMed  CAS  Google Scholar 

  • Stolz, A., Hammond, L., and Lou H.: Rat and human bile acid binders are members of the monomeric reductase gene family. Advances in Experimental Medicine & Biology. 372 (1995) 269–280.

    Article  CAS  Google Scholar 

  • Wermuth, B. and Monder, C.: Aldose and aldehyde reductase exhibit isocorticosteroid reductase activity. Eur. J. Biochem. 131 (1983) 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Wermuth, B., Münch, J.D.B., and von Wartburg, J-P.: Purification and properties of NADPH-dependent aldehyde reductase from human liver. J. Biol. Chem. 252 (1977) 3821–3828.

    PubMed  CAS  Google Scholar 

  • Wermuth, B., Omar, A., Forster, A., di Francesco, C., Wolf, M., von Wartburg, J.P., Bullock, B., and Gabbay, K.H.: Primary structure of aldehyde reductase from human liver. Progress in Clinical & Biological Research. 232 (1987) 297–307.

    CAS  Google Scholar 

  • Wermuth, B.: Aldo-keto reductases. in Enzymology of Carbonyl Metabolism 2: Aldehyde Dehydrogenase, Aldo/Keto Reductase, and Alcohol Dehydrogenase (1985) pp 209–230, Alan R. Liss, Inc., New York.

    Google Scholar 

  • Wermuth, B.: Human carbonyl reductases, in Enzymology of Carbonyl Metabolism: Aldehyde Dehydrogenase and Aldo/Keto Reductase (1982) pp 261–274, Alan R. Liss, Inc., New York.

    Google Scholar 

  • Wilson, D.K., Bohren, K.M., Gabbay, K.H., & Quiocho, F.A.: An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257 (1992) 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Xue, L.A., Talalay, P., & Mildvan, A.S.: Studies of the catalytic mechanism of an active-site mutant (Y14F) of delta 5–3-ketosteroid isomerase by kinetic deuterium isotope effects. Biochemistry 30 (1991) 10858–10865.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barski, O.A., Gabbay, K.H., Bohren, K.M. (1996). Aldehyde Reductase. In: Weiner, H., Lindahl, R., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 6. Advances in Experimental Medicine and Biology, vol 414. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5871-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5871-2_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7692-7

  • Online ISBN: 978-1-4615-5871-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics