Skip to main content

Structural Studies of Aldo-Keto Reductase Inhibition

  • Chapter
  • 277 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 414))

Abstract

Aldose reductase (ALR2) has long been a target for drug design to combat complications which arise in diabetes (Dvornik et al., 1973). The enzyme’s ability to reduce in an NADPH-dependent manner, glucose in its carbonyl-containing, open chain form to sorbitol has been linked to a number of these complications affecting a number of tissues. A large number of ALR2 inhibitors have been developed (reviewed in Sarges & Oates, 1993) but most have not proven to be clinically effective. These disappointing results may be attributed to the inhibition of other members of the aldo-keto reductase family of proteins. This set of enzymes shares considerable sequence homology and consequently has overlapping substrate and inhibitor specificity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, Ringe D, Petsko GA, Gabbay KH. (1994) Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33:2021–3032.

    Article  PubMed  CAS  Google Scholar 

  • Borhani DW, Harter TM, Petrash JM. (1992) The crystal structure of the aldose reductase — NADPH binary complex. J. Biol. Chem. 267:24841–24847.

    PubMed  CAS  Google Scholar 

  • Bruenger AT. (1992) XPLOR: A system for crystallography and NMR. Version 3.1 Manual, Yale University Press, New Haven CT.

    Google Scholar 

  • Donohue PJ, Alberts GF, Hampton BS, Winkles JA. (1994) A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. J. Biol. Chem. 269:8604–8609.

    PubMed  CAS  Google Scholar 

  • Dvornick D, Simard-Duguesne N, Kraml M, Sestanj K, Gabbay KH, Kinoshita JH, Varma DS, Merola LO. Polyol accumulation in galactosaemic and diabetic rats: control by an aldose reductase inhibitor. Science 182:1146–1148.

    Google Scholar 

  • El-Kabbani O, Green NC, Lin G, Carson M, Narayanam SVL, Moore K, Flynn TG, DeLucas LJ. (1994) Structures of human and porcine aldehyde reductase: an enzyme implicated in diabetic complications. Acta Crystallogr. D50:859–868.

    CAS  Google Scholar 

  • El-Kabbani O, Judge K, Ginell SL, Myles D, DeLucas LJ, Flynn TG. (1995) Structure of porcine aldehyde reductase holoenzyme. Nat. Struct. Biol. 2:687–692.

    Article  PubMed  CAS  Google Scholar 

  • Farber GK, Petsko GA. (1990) The evolution of α/β barrel enzymes. Trends Biochem. Sci. 15:228–234.

    Article  PubMed  CAS  Google Scholar 

  • Hoog SS, Pawlowski JE, Alzari PM, Penning TM, Lewis M. (1994) Three-dimensional structure of rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily. Proc. Natl. Acad. Sci. U.S.A. 91:2517–2521.

    Article  PubMed  CAS  Google Scholar 

  • Kador PF, Lee YS, Rodriguez L, Sato S, Bartoszko-Malik A, Abdel-Ghany YS, Miller DD. (1995) Identification of an aldose reductase inhibitor site by affinity labeling. Bioorg. Med. Chem. 3:1313–1324.

    Article  PubMed  CAS  Google Scholar 

  • Kraulis PJ. (1991) MOLSCR1PT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystall. 24:946–950.

    Article  Google Scholar 

  • Mylari BL, Larson ER, Beyer TA, Zembrowski WJ, Aldinger CE, Dee MF, Siegel TW. Singleton DH. (1991) Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-l-phthalazine-acetic acid (zopolrestat) and congeners. J. Med. Chem. 35:457–465.

    Article  Google Scholar 

  • Petrash JM, Harter TM, Devine CS, Olins PO, Bhatnagar A, Liu S, Srivastava SK. (1992) Involvement of cysteine residues in catalysis and inhibition of human aldose reductase: site directed mutagenesis of cys-80, cys-298 and cys-303. J. Biol. Chem. 267:24833–24840.

    PubMed  CAS  Google Scholar 

  • Rondeau JM, Tete-Favier F, Podjarny A, Reymann JM, Barth P, Biellmann JF, Moras D. (1992) Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 355:469–472.

    Article  PubMed  CAS  Google Scholar 

  • Sarges R, Oates P. (1993) Aldose reductase inhibitors: recent developments. Prog. Drug Res. 40:99–161.

    PubMed  CAS  Google Scholar 

  • Shoichet BK, Kuntz ID. (1993) Matching chemistry and shape in molecular docking. Prot. Eng. 6:723–732.

    Article  CAS  Google Scholar 

  • Tarle I, Borhani DW, Wilson DK, Quiocho FA, Petrash JM. (1993) Probing the active site of human aldose reductase: site directed mutagenesis of asp-43, tyr-48, lys-77 and his-110. J. Biol. Chem. 268:25687–25693.

    PubMed  CAS  Google Scholar 

  • Wilson DK, Bohren KM, Gabbay KH, Quiocho FA. (1992) An unlikely sugar substrate site in the 1.65 Å structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Wilson DK, Tarle I, Petrash JM, Quiocho FA. (1993) Refined 1.8 Å structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc. Natl. Acad. Sci. U.S.A. 90:9847–9851.

    Article  PubMed  CAS  Google Scholar 

  • Wilson DK, Nakano T, Petrash JM, Quiocho FA. (1995) 1.7 Å structure of FR-1, a fibroblast growth factor-induced member of the aldo-keto reductase family complexed with coenzyme and inhibitor. Biochemistry 34:14323–14330.

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Hodoscek M, Brooks B, Kador PF (1996) Investigation of the geometry of asp-43, lys-77, tyr-48 and his-110 in the active site of human aldose reductase by the QM/MM potential, in the 8th International Workshop for Enzymology and Molecular Biology of Carbonyl Metabolism. Deadwood, South Dakota, June 29-July 3, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, D.K., Nakano, T., Petrash, J.M., Quiocho, F.A. (1996). Structural Studies of Aldo-Keto Reductase Inhibition. In: Weiner, H., Lindahl, R., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 6. Advances in Experimental Medicine and Biology, vol 414. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5871-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5871-2_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7692-7

  • Online ISBN: 978-1-4615-5871-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics