Skip to main content

Activation of Tyrosine Hydroxylase in Striatum of Newborn Piglets in Response to Hypocapnic Ischemia and Recovery

  • Chapter
Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

The present study describes the effect of hypocapnic ischemia caused by hyperventilation on striatal levels of dopamine, DOPAC, HVA and activity of tyrosine hydroxylase in striatal synaptosomes isolated from the brain of newborn piglets. Hyperventilation did not result in statistically significant changes in the striatal level of dopamine and its major metabolites; however, it was observed that after 20 min of recovery the levels of striatal tissue dopamine, DOPAC and HVA increase by 195%, 110% and 205%, respectively. The level of DOPA (3,4-dihydroxyphenylalanine), which was used as an index of tyrosine hydroxylase activity, also increased after recovery. The rate of dopamine synthesis was 32 pmoles/mg protein/10 min in control piglets and after recovery this increased to 132 pmoles/mg protein/10 min. Measurement of the tyrosine hydroxylase activity in Triton X-100 treated synaptosomes showed that, after 20 min of recovery, there was an increase in Vmax with no change in Km for pteridine cofactor, compared to control. This is consistant with the enzyme having been covalently modified (activated) during tissue ischemia caused by hyperventilation and remaining activated well into the recovery period. We postulate that ischemia can induce long lasting alterations in dopamine synthesis, which may play some role in mediation of hypoxic cell injury in immature brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alousi A. and Weiner N. (1966) The regulation of norepinephrine synthesis in sympathetic nerves: effect of nerve stimulation, cocaine, and catecholamine-releasing agents. Proc. Natl. Acad. Sci. USA 56, 1491–1496.

    Article  PubMed  CAS  Google Scholar 

  • Baker A.J., Zornow M.H., Scheller M.S., Yaksh T.L., Skilling S.R., Smullin D.H., Larson A.A., and Kuczenski R. (1991) Changes in extracellular concentration of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J. Neurochem. 57, 1370–1379.

    Article  PubMed  CAS  Google Scholar 

  • Bustos G., Roth R.H., and Morgenroth V.H. (1976) Activation of tyrosine hydroxylase in rat striatal slices by K+-depolarization-effect of ethanol. Biochem. Pharmacol. 25, 2493–2497

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury M. and Fillenz M. (1988) K+-dependent stimulation of dopamine synthesis in striatal synaptosomes is mediated by protein kinase C. J. Neurochem. 50, 624–629

    Article  PubMed  CAS  Google Scholar 

  • Clemens J.A. and Phebus L.A. (1988) Dopamine depletion protects striatal neurones from ischemia-induced cell death. Life Science, 42, 707–713.

    Article  CAS  Google Scholar 

  • Damsma G., Boisvert D.R, Mudrick L.A., Wenkstern D., and Fibiger H.C. (1990) Effects of transient forebrain ischemia and pargyline on extracellular concentrations of dopamine, serotonin and their metabolites in the rat striatum as determined by in vivo microdialysis. J. Neurochem. 54, 801–808.

    Article  PubMed  CAS  Google Scholar 

  • El Mestikawy S., Glowinski J., and Hamon M. (1983) Tyrosine hydroxylase activation in depolarized dopaminergic terminals-involvement of Ca2+-dependent phosphorylation. Nature 302, 830–832.

    Article  PubMed  Google Scholar 

  • El Mestikawy S., Gozlan H., Glowinski J., and Hamon M. (1985) Characteristics of tyrosine hydroxylase activation by K+-induced depolarization and/or forskolin in rat striatal slices. J. Neurochem. 45, 173–184

    Article  PubMed  CAS  Google Scholar 

  • Globus M.Y-T., Ginsberg M.D., Dietrich W.D., Busto R., and Scheinberg P. (1987) Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci. Letters 80, 251–256.

    Article  CAS  Google Scholar 

  • Globus M.Y-T., Busto R., Dietrich W.D., Martinez E., Valdes I., and Ginsberg M.D. (1988) Effect on ischemia on the in vivo release of striatal dopamine, glutamate, and γ-aminobutyric acid studied by intracerebral microdialysis. J. Neurochem. 51, 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein M., Bronaugh R. L., Ebstein B., and Roberge C. (1976) Stimulation of tyrosine hydroxylase activity by cyclic AMP in synaptosomes and in soluble striatal enzyme preparations. Brain Res. 109, 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Greene L.A. and Rein G. (1978) Short-term regulation of catecholamine biosynthesis in a nerve growth factor responsive clonal line of rat pheochromocytoma cells. J. Neurochem. 30, 549–555.

    Article  PubMed  CAS  Google Scholar 

  • Harris J.E. and Roth R.H. (1971) Potassium-induced acceleration of catecholamine biosynthesis in brain slices. I.Study on the mechanism of action. Mol. Pharmacol. 7, 593–604.

    PubMed  CAS  Google Scholar 

  • Hirata, Y., Togari, A., and Nagatsu, T. (1983) Studies on tyrosine hydroxylase system in rat brain slices using high performance liquid chromatography with electochemical detection. J. Neurochem. 40, 1585–1589.

    Article  PubMed  CAS  Google Scholar 

  • Levitt M., Spector S., Sjoerdsma A., and Udenfriend S. (1965) Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea pig heart. J. Pharmacol. Exp. Ther. 148, 1–8.

    PubMed  CAS  Google Scholar 

  • Lovenberg W., Bruck E.A., and Hanbauer I. (1975) ATP, cyclic AMP and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactors. Proc. Natl. Acad. Sci. USA 72, 2955–2958.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., and Randall R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 1268–1274.

    Google Scholar 

  • Marie C., Mossiat C., Beley A. and Bralet J. (1992) Alpha-Methyl-para-tyrosine pretreatment protects from striatal neuronal death induced by four-vessel occlusion in the rat. Neurochem. Research, 17, 961–965.

    Article  CAS  Google Scholar 

  • Mueller R.A., Thoenen H., and Axelrod J. (1969) Increase in tyrosine hydroxilase activity after resperine administration. J. Pharmacol. Exp. Ther. 169, 74–79.

    PubMed  CAS  Google Scholar 

  • Nagatsu T., Levitt M., and Udenfriend S. (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol Chem. 239, 2910–2917.

    PubMed  CAS  Google Scholar 

  • Obrenovitch T.P., Sarna G.S., Matsumoto T., and Symon L. (1990) Extracellular striatal dopamine and its metabolites during transient cerebral ischaemia. J. Neurochem. 54, 1526–1532.

    Article  PubMed  CAS  Google Scholar 

  • Pollock R.J., Kapatos G., and Kaufman S. (1981) Effect of cyclic AMP-dependent protein phosphorylating conditions on the pH-dependent activity of tyrosine hydroxylase from beef and rat striata. J. Neurochem. 37, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Slivka, A., and Cohen, G. (1985) Hydroxyl radical attack on dopamine. J. Biol. Chem. 260, 15466–15472.

    PubMed  CAS  Google Scholar 

  • Slivka, A., Brannan, T.T., Weinberger, J., Knott, P.J., and Cohen, G. (1988) Increase in extracellular dopamine in the striatum during cerebral ischemia: A study utilizing cerebral microdialysis. J. Neurochem. 50, 1714–1718.

    Article  PubMed  CAS  Google Scholar 

  • Tank A.W., Lewis E.J., Chikaraishi D.M., and Weiner N. (1985) Elevation of RNA coding for tyrosine hydroxilase in rat adrenal gland by resperine treatment and exposure to cold. J. Neurochem. 45, 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H., Mueller R.A., and Axelrod J. (1969) Trans-synaptic induction of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 169, 249–254.

    PubMed  CAS  Google Scholar 

  • Wilson D.F., Pastuszko A., DiGiacomo J.E., Pawlowski M., Schneiderman R., and Delivoria-Papadopoulos, M. (1991) Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. J. App. Physiol. 70(6), 2691–2696.

    CAS  Google Scholar 

  • Yamamoto B.K., and Davy S. (1992) Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J. Neurochem. 58, 1736–1742.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J. and Piantadosi C.A. (1991) Preventation of H2O2 generation by monoamine oxidase protects against CNS O2 toxicity. J. Appl. Physiol. 71(3), 1056–1061.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pastuszko, P., Wilson, D.F. (1997). Activation of Tyrosine Hydroxylase in Striatum of Newborn Piglets in Response to Hypocapnic Ischemia and Recovery. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics