Skip to main content

Release of Lactate by the Lung in Acute Lung Injury

  • Chapter
Oxygen Transport to Tissue XVIII

Abstract

The pathogenesis of hyperlactatemia during SIRS is poorly understood. Yet lactate is often used clinically as a marker of anaerobic metabolism and is thus assumed to represent inadequate tissue perfusion.1–5 This belief is supported by the high mortality seen in patients with hyperlactatemia,1–2 and by the disordered oxygen transport exhibited by patients with sepsis.6 Many clinicians routinely use therapies to improve global oxygen transport on the assumption that such treatment will reverse tissue dysoxia and ameliorate hyperlactatemia.7–8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vitek V, Cowley RA (1971) Blood lactate in the prognosis of various forms of shock. Ann Surg 173:308–313.

    Article  PubMed  CAS  Google Scholar 

  2. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 1970; 41:989–1001.

    Article  PubMed  CAS  Google Scholar 

  3. Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med 1983;11:449–451.

    Article  PubMed  CAS  Google Scholar 

  4. Madias NE. Lactic acidosis. Kidney Int 1986; 28:752–774.

    Article  Google Scholar 

  5. Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med 1992; 20:80–93.

    Article  PubMed  CAS  Google Scholar 

  6. Sayeed MM. Pulmonary cellular dysfunction in endotoxin shock: metabolic and transport derangements. Circ Shock 1982; 9:335–355.

    PubMed  CAS  Google Scholar 

  7. Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med 1983; 11:449–451.

    Article  PubMed  CAS  Google Scholar 

  8. Fiddian-Green RG, Haglund U, Gutierrez G, Shoemaker WC. Goals for the resuscitation of shock. Crit Care Med 1993; 21:S25–S31.

    Article  PubMed  CAS  Google Scholar 

  9. Hotchkiss RS, Rust RS, Dence CS, et al. Evaluation of the role of cellular hypoxia in sepsis by hypoxic marker [18F] fluoromisonidazole. Am J Physiol 1991; 261: R965–R972.

    PubMed  CAS  Google Scholar 

  10. Boekstegers P, Weidenhofer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 1994; 22: 640–650.

    Article  PubMed  CAS  Google Scholar 

  11. Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 1993; 270:1724–1730.

    Article  PubMed  CAS  Google Scholar 

  12. Bellomo R, Ondulick B, Kellum, JA, Pinsky MR. Visceral lactate fluxes during early endotoxemia in the dog. Am J Respir Crit Care Med 1994; 149: A413 (abstract).

    Google Scholar 

  13. Strauss B, Caldwell PRB, Fritss Jr. HW. Observations on a model of proliferative lung disease. I. Transpul-monary arteriovenous differences of lactate, pyuvate and glucose. J Clin Invest 1970; 49:1305–1310.

    Article  PubMed  CAS  Google Scholar 

  14. Bowles SA, Schlichtig R, Kramer DJ, Klions HA. Arteriovenous pH and partial pressure of CO2 detect critical oxygen delivery during progressive hemorrhage in dogs. J Crit Care 1992; 7:95–105.

    Article  Google Scholar 

  15. Gutierrez G, Clark C, Nelson C, Tiu A, Brown S. The lung as a source of lactate in sepsis and ARDS. Chest 1993; 104:S12 (abstract).

    Google Scholar 

  16. Mitchel AM, Cournaud A. The fate of circulating lactic acid in the human lung. J Clin Invest 1955; 34:471–476.

    Article  Google Scholar 

  17. Harris P, Bailey T, Bateman M, et al. Lactate, pyruvate, glucose and free fatty acid in mixed venous and arterial blood. J Appl Physiol 1963; 18:933–936.

    PubMed  CAS  Google Scholar 

  18. Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 1988; 138:720–723.

    Article  PubMed  CAS  Google Scholar 

  19. Woods HF, Connor H. The role of liver dysfunction in the genesis of lactic acidosis. In: Woods HF, Connor H, eds. Lactate in acute conditions. Basel: Karger, 1979; 102–114.

    Google Scholar 

  20. Kilpatrick-Smith L, Erecinska M. Cellular effects of endotoxin in vitro. I. Effect of endotoxin on mitochondrial substrate metabolism and intracellular calcium. Circ Shock 1983; 11:85–99.

    PubMed  CAS  Google Scholar 

  21. Kilpatrick-Smith L, Dears J, Erecinska M, Silver IA. Cellular effects of endotoxin in vitro II. Reversibility of endotoxic damage. Circ Shock 1983; 11:101–111.

    PubMed  CAS  Google Scholar 

  22. Lee KH, Rico P, Ondulick BW, Pinsky MR. Hydrochloric acid-induced lung injury is not associated with a positive lung lacate flux. Am J Respir Crit Care Med 1995;151:A761.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kellum, J.A., Kramer, D.J., Mankad, S., Bellomo, R., Lee, K., Pinsky, M.R. (1997). Release of Lactate by the Lung in Acute Lung Injury. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics