Skip to main content

Traumatic Brain Injury

  • Chapter
  • 137 Accesses

Part of the book series: Advances in Neurochemistry ((ANCH,volume 8))

Summary

Traumatic injury to the central nervous system continues to be the major cause of mortality and morbidity in children and young adults. While much has been accomplished on a preventative level to reduce the incidence of neurotrauma, little progress has been made in terms of developing effective neuroprotective therapies for administration after the traumatic event. Nonetheless, significant advances in understanding the mechanisms associated with the development of irreversible tissue injury after trauma have been made, thereby increasing the likelihood of an effective therapeutic intervention being developed that will prevent, or at least attenuate, the post-traumatic injury process. Much of this progress toward understanding the mechanisms of injury can be ascribed to the development of noninvasive procedures for monitoring physiological and biochemical events after injury. In particular, magnetic resonance spectroscopy has made a significant contribution to the understanding of cell metabolism after traumatic injury and to the elucidation of the effects of experimental pharmacologic interventions. This chapter examines the contributions that magnetic resonance spectroscopy has made to the characterization of metabolic events after traumatic brain injury and the impact that these findings have had on the development of appropriate interventional strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altura, B. M., Altura, B. T., and Gupta, R. K., 1992, Alcohol intoxication results in rapid loss in free magnesium in brain and disturbances in brain bioenergetics: Relation to cerebrospasm, alcohol-induced strokes, and barbiturate anesthesia-induced deaths, Magnesium Trace Elem. 10:122–135.

    CAS  Google Scholar 

  • Andersen, B. J., and Marmarou, A., 1992, Post-traumatic selective stimulation of glycolysis, Brain Res. 585:184–189.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, B. J., Unterberg, A. W., Clarke, G. D., and Marmarou, A., 1988, Effect of posttraumatic hypoventilation on cerebral energy metabolism, J. Neurosurg. 68:601–607.

    Article  PubMed  CAS  Google Scholar 

  • Aue, W. P., 1986, Localization methods for in viva nuclear magnetic resonance spectroscopy, Rer. Mogn. Reson. Med. 1:21–72.

    Google Scholar 

  • Badar-Goffer, R. S., Thatcher, N. M., Morris, P. G., and Bachelard, H. S.. 1993, Neither moderate hypoxia nor mild hypoglycaemia alone causes any significant increase in cerebral [Сa2+ ]i,: Only a combination of the two insults has any effect. A 31Р and 19F NMR study. J. Neurochem. 61:2207–2214.

    Article  PubMed  CAS  Google Scholar 

  • Badar-Goffer, R. S., Morris, P. G., Thatcher, N. M., and Bachelard, H. S., 1994, Excitotoxic amino acids cause appearance of magnetic resonance spectroscopy observable zinc in superfused cortical slices, J. Neurochem. 62:2488–2491.

    Article  PubMed  CAS  Google Scholar 

  • Kendall, M. R., 1984, Surface coil and depth resolution using the spatial variation of radiofrequency field, in “Biomedical Magnetic Resonance” (T. L. James and A. R. Margulis, eds.), pp. 99–126, Radiology Research and Education Foundation, San Francisco.

    Google Scholar 

  • Buchli, R., and Boesiger, P., 1993, Comparison of methods for the determination of absolute metabolite concentrations in human muscle, Magn. Reson. Med. 30:552–558.

    Article  PubMed  CAS  Google Scholar 

  • Cady, E. B., 1990, Absolute quantitation of phosphorus metabolites in the cerebral cortex of the newborn human infant and in the forearm muscles of young adults using a double-tuned surface coil, J. Mogn. Reson. 87:433–446.

    Article  CAS  Google Scholar 

  • Cao, Y., Vikingstad, E. M., Huttenlocher, P. R., Towle, V. L., and Levin, D. N., 1994, Functional magnetic resonance studies of the reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period, Proc. Natl. Acad. Sci. USA 91:9612–9616.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Eleff, S., and Leigh, J. S., 1980, Noninvasive, nondestructive approaches to cell bioenergetics, Proc. Natl. Acad. Sci. USA 77:7430–7434.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Leigh, J. S., Kent, J., and McCully, K., 1986a, Metabolic control principles and 31Р NMR, Fed. Proc. 45:2915–2920.

    CAS  Google Scholar 

  • Chance, B., Leigh, J. S., Kent, J., McCully, K., Nioka, S., Clark, B. J., Mans, J. M., and Graham, T., 1986b, Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance, Proc. Natl. Acad. Sci. USA 83:9458–9462.

    Article  CAS  Google Scholar 

  • Choi, D. W., 1988, Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage, Trends Neurosci. 11:465–469.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y., Sanada, T., Pitts, L. H., Chang, L.-H., Nishimura, M. C., Weinstein, P. R., Litt, L., and James, T. L., 1991, Surface coil spectroscopic imaging: Time and spatial evolution of lactate production following fluid percussion brain injury, Magn. Reson. Med. 17:225–236.

    Article  PubMed  CAS  Google Scholar 

  • Cohn, M., and Hughes, T. R., 1962, Nuclear magnetic resonance spectra of adenosine di- and triphosphate, J. Biol. Chem. 237:176–181.

    PubMed  CAS  Google Scholar 

  • Cooper, P. R., 1985, Delayed brain injury: Secondary insults, in “Central Nervous System Trauma Status Report-1985” (D. P. Becker and J. T. Povlishock, eds.), pp. 217–228, William Byrd Press/NIH, Bethesda, Maryland.

    Google Scholar 

  • Corkey, B. E., Duszynski, J., Rich, T. L., Matschinsky, B., and Williamson, J. R., 1986, Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria, J. Biol. Chern. 261:2567–2574.

    CAS  Google Scholar 

  • Cortez, S., McIntosh, T. K., and Noble, L., 1989, Experimental fluid percussion brain injury: Vascular disruption and neuronal and glial alterations, Brain Res. 482:271–282.

    Article  PubMed  CAS  Google Scholar 

  • DeSalles, A. A. F., Kontos, H. A., Becker, D. P., Yang, M. S., Ward, J. D., Moulton, R., Gruemer, H. D., Lutz, H., Maset, A. L., Jenkins, L., Marmarou, A., and Muizelaar, P., 1986, Prognostic significance of ventricular CSF lactic acidosis in severe head injury, J. Neurosurg. 65:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Duckrow, R. B., LaManna, J. C., Rosenthal, M., Levasseur, J. E., and Patterson, J. L., 1981, Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat, J. Neurosurg. 54:607–614.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, C. S., and Vink, R., 1992, Increased mortality in female rats after brain trauma is associated with lower free Mg2+, NeuroReport 4:957–960.

    Google Scholar 

  • Emerson, C. S., Headrick, J. P., and Vink, R., 1993, Estrogen improves biochemical and neurologic outcome following traumatic brain injury in male rats but not in females, Brain Res. 608:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Faden, A. I., 1987, Opiate-receptor antagonists, thyrotropin-releasing hormone (TRH), and TRH analogs in the treatment of spinal cord injury, Cent. Nerv. Syst. Trauma 4:217–226.

    PubMed  CAS  Google Scholar 

  • Faden, A. I., Demediuk, P., Panter, S. S., and Vink, R., 1989, Excitatory amino acids, N-methyl-Dasparate receptors and traumatic brain injury, Science 244:798–800.

    Article  PubMed  CAS  Google Scholar 

  • Fineman, I., Hovda, D. A., Smith, M., Yoshino, A., and Becker, D. P., 1993, Concussive brain injury is associated with a prolonged accumulation of calcium: A 45Ca autoradiographic study, Brain Res. 624:94–102.

    Article  PubMed  CAS  Google Scholar 

  • Flamm, E. S., Demopoulos, H. B., Seligman, M. L., Tomasula, J. J., DeCrescito, C., and Ransohoff, J., 1977, Ethanol potentiation of central nervous system trauma, J. Neurosurg. 46:328–335.

    Article  PubMed  CAS  Google Scholar 

  • Gadian, D. G., 1982, “Nuclear Magnetic Resonance and Its Application to Living Systems,” Oxford University Press, New York.

    Google Scholar 

  • Gennarelli, T. A., 1994, Animate models of human head injury, J. Neurпtrпuma 11:357–368.

    CAS  Google Scholar 

  • Ginsberg, M. D., Mela, L., Wrobel-Kuhl, K., and Reivich, M., 1977, Mitochondrial metabolism following bilateral cerebral ischemia in the gerbil, Ann. Neurol. 1:519–527.

    Article  PubMed  CAS  Google Scholar 

  • Golding, E. M., and Vink, R., 1995a, Efficacy of competitive versus noncompetitive blockade of the NMDA channel following traumatic brain injury is associated with restoration of magnesium homeostasis, Mol. Chem. Neuropathol. 24:137–150.

    Article  CAS  Google Scholar 

  • Golding, E. M., and Vink, R., 1995b, Inhibition of phospholipase C with neomycin improves meta- bolic and neurologic outcome following traumatic brain injury, Brain Res. 668:46–53.

    Article  Google Scholar 

  • Golding, E. M., McIntosh, T.K., Williams, J. P., and Vink, R., 1994, Blood glucose concentration does not affect outcome following moderate brain trauma in rats, in “Recent Advances in Neurotraumatology-1994” (L. Atkinson and G. S. Merry, eds.), pp. 537–541, World Federation of Neurological Societies, Brisbane

    Google Scholar 

  • Goldstein, M., 1990, Traumatic brain injury: A silent epidemic, Ann. Neurol. 27:327.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Mendez, R., Litt, L., Koretsky, A. P., Von Colditz, J., Weiner, M. W., and James, T. L., 1984, Comparison of 31Р NMR spectra of in vivo rat brain using convolution difference and saturation with a surface coil. Source of the broad component in the brain spectrum, J. Magn. Resot. 57:526–533.

    Article  CAS  Google Scholar 

  • Gupta, R. K., Benovic, J. L., and Rose, Z. B., 1978, The determination of the free magnesium level in the human red blood cell by 31P NMR, J. Biol. Chem. 253:6172–6176.

    PubMed  CAS  Google Scholar 

  • Gupta, R. K., Gupta, P., Yushok, W. D., and Rose, Z. B., 1983, On the noninvasive measurements of intracellular free magnesium by 31P NMR spectroscopy, Phvsiol. Chem. Phys. Med. NMR 15:265–280.

    CAS  Google Scholar 

  • Halt, P. S., Swanson, R. A., and Faden, A. I., 1992, Alcohol exacerbates behavioral and neurochemical effects of rat spinal cord trauma, Arch. Neurol. 49:1178–1184.

    Article  PubMed  CAS  Google Scholar 

  • Hanstock, C. C., Faden, A. I., Bendall, M. R., and Vink, R., 1994, Diffusion-weighted imaging differentiates ischemic tissue from traumatized tissue, Stroke 25:843–848.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, R. L., Katayama, Y., Jenkins, L. W., Lyeth, B. G., Clifton, G. L., Gunter, J., Povlishock, J. T., and Young, H. F., 1988, Regional rates of glucose utilization in the cat following concussive head injury, J. Neurotrauma 5:121–137.

    Article  PubMed  CAS  Google Scholar 

  • Headrick, J. P., and Willis, R. J., 1991, Cytosolic free magnesium in stimulated, hypoxie, and underperfused rat heart, J. Mol. Cell. Cardiol. 23:991–999.

    Article  PubMed  CAS  Google Scholar 

  • Heath, D. L., and Vink, R., 1994, NMR characterisation of impact acceleration induced severe traumatic brain injury in rats, Neurotraurna Soc. Abstr. 1994:84.

    Google Scholar 

  • Hovda, D. A., Becker, D. P., and Katayama, Y., 1992, Secondary injury and acidosis, in “Central Nervous System Trauma Status Report-1991” (J. A. Jane, D. K. Anderson. J. C. Torner, and W. Young, eds.), pp. 47–60, Mary Ann Liebert, New York.

    Google Scholar 

  • Inao, S., Marmarou, A., Clarke, G. D., Andersen, B. J., Fatouros, P. P.. and Young, H. F., 1988, Production and clearance of lactate from brain tissue, cerebrospinal fluid and serum following experimental brain injury, J. Neurosurg. 69:736–744.

    Article  PubMed  CAS  Google Scholar 

  • Ishige, N., Pitts, L. H., Poliani, L., Hashimoto, T., Nishimura, M. C., Bartkowski, H. M., and James, T. L., 1987, The effect of hypoxia on traumatic head injury in rats: Part 2. Changes in high-energy phosphate metabolism. Neurosurgery 20:854–858.

    Article  PubMed  CAS  Google Scholar 

  • Ishige, N., Pitts, L. H., Berry, I., Nishimura, M., and James, T. L., 1988, The effects of hypovolemic hypotension on high-energy phosphate metabolism of traumatized brain in rats. J. Neurosurg. 68:129–136.

    Article  PubMed  CAS  Google Scholar 

  • James, T. L., and Margulis, A. R., 1984, “Biomedical Magnetic Resonance.” Radiology Research and Education Foundation, San Francisco.

    Google Scholar 

  • Jelicks, L. A., and Gupta, R. K., 1990, NMR measurement of cytosolic free calcium, free magnesium and intracellular sodium in the aorta of the normal and spontaneously hypertensive rat, J. Biol. Chem. 265:1394–1400.

    PubMed  CAS  Google Scholar 

  • Jennet, B., Graham, D. I., Adams, H., and Johnston, I. H., 1973, Ischemic brain damage after fatal blunt head injury, in “Cerebral Vascular Diseases: Eighth Conference” (F. H. McDowell and R. W. Brennan, eds.), pp. 163–171, Grune and Stratton, New York.

    Google Scholar 

  • Kawamata, T., Katayama, Y., Hovda, D. A., Yoshino, A., and Becker, D. P., 1992, Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury, J. Cereb. Blood Flaw Metab. 12:12–24.

    Article  CAS  Google Scholar 

  • Kraus, J. F., and Arzemanian, S., 1989, in “Mild to Moderate Head Injury” (J. T. Hoff, T. E. Anderson, and T. M. Cole, eds.), pp. 9–28, Blackwell Scientific Publications, London.

    Google Scholar 

  • Kushmerick, M. J., Dillon, P. F., Meyer, R. A., Brown, T. R., Krisanda, J. M., and Sweeney, H. L., 1986, 31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle, J. Biol. Chem. 261:14420–14429.

    PubMed  CAS  Google Scholar 

  • Lawson, J. W., and Veech, R. L., 1979, Effects of pH and free Mg2+ on the K eq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions, J. Biol. Chem. 254:6528–6537.

    PubMed  CAS  Google Scholar 

  • Le Bihan, D., Turner, R., Moseley, M. E., and Hyde, J. S., 1993, Functional MRI of the brain, Magn. Reson. Med. 30:405–408.

    Article  Google Scholar 

  • Levin, H. S., Amparo, E., Eisenberg, H. M., Williams, D. H., High, W. M., McArdle, C. B., and Weiner, R. L., 1987, Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injury, J. Neurosurg. 66:706–713.

    Article  PubMed  CAS  Google Scholar 

  • Li, H. Y., Dai, L. J., Krieger, C., and Quamme, G. A., 1993, Intracellular Mg2+ concentration following metabolic inhibition in opossum cells, Biochim. Biophys. Acta 1181:307–315.

    Article  PubMed  CAS  Google Scholar 

  • London, R. E., 1991, Methods for measurement of intracellular magnesium: NMR and fluorescence, Anna. Rev. Physiol. 53:241–258.

    Article  CAS  Google Scholar 

  • Marmarou, A., Foda, M. A. A., Van den Brink, W., Campbell, J., Kita, H., and Demetriadou, K., 1994, A new model of diffuse brain injury in rats; Part I: Pathophysiology and biomechanics, J. Neurosurg. 80:291–300.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M. L., Westbrook, G. L., and Guthrie, P. B., 1984, Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons, Nature (London) 309:261–263.

    Article  CAS  Google Scholar 

  • McIntosh, T. K., 1993, Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: A review, J. Neurotrauma 10:215–261.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. K., Faden, A. I., Bendall, M. R., and Vink, R., 1987, Traumatic brain injury in the rat: Alterations in brain lactate and pH as characterized by 1H and 31P nuclear magnetic resonance, J. Neurochem. 49:1530–1540.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. K., Faden, A. I., Yamakami, I., and Vink, R., 1988a, Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioural studies, J. Neurotrauma 5:17–31.

    Article  CAS  Google Scholar 

  • McIntosh, T. K., Vink, R., and Faden, A. I., 1988b, An analog of thyrotropin-releasing hormone improves outcome after traumatic brain injury: 31P NMR studies, Am. J. Physiol. 254:R785—R792.

    Google Scholar 

  • McIntosh, T. K., Vink, R., Noble, L. J., Yamakami, I., Fernyak, S. E., Soares, H., and Faden, A. I., 1989a, Traumatic brain injury in the rat: Characterization of a lateral fluid percussion injury model, Neuroscience 28:233–244.

    Article  CAS  Google Scholar 

  • McIntosh, T. K., Vink, R., Soaves, H., Hayes, R., and Simon, R., 1989b, Effects of the Nmethyl-Daspartate receptor blocker MK-801 on neurologic function after experimental brain injury, J. Neurotrauma 6:247–259.

    Article  CAS  Google Scholar 

  • McIntosh, T. K., Vink, R., Yamakami, I., and Faden, A. I., 1989c, Magnesium protects against neurological deficit after brain injury, Brain Res. 482:252–260.

    Article  CAS  Google Scholar 

  • McIntosh, T. K., Vink, R., Soares, H., Hayes, R. L., and Simon, R. P., 1990, Effect of noncompetitive blockade of N-methyl-D-aspartate receptors on the neurochemical sequelae of experimental brain injury, J. Neurochem. 55:1170–1179.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, T. K., Smith, D. H., Hayes, R. L., Vink, R., and Simon, R. P., 1992, Role of excitatory amino acid neurotransmitters in the pathogenesis of traumatic brain injury, in “Excitatory Amino Acids” (R. P. Simon, ed.), pp. 247–253, Thieme Medical Publishers, New York.

    Google Scholar 

  • Mullins, P. G. M., and Vink, R., 1995, Chronic alcohol exposure decreases brain intracellular free magnesium concentration in rats, NeuroReport 6:1633–1636.

    CAS  Google Scholar 

  • Myers, R. E., and Yamaguchi, M., 1976, Effects of serum glucose concentration on brain response to circulatory arrest, J. Neuropathol. Exp. Neurol. 35:301.

    Article  Google Scholar 

  • Nilsson, B., and Nordstrom, C.-H., 1977, Rate of cerebral energy consumption in concussive head injury in the rat, J. Neurosurg. 47:274–281.

    Article  PubMed  CAS  Google Scholar 

  • Nioka, S., Smith, D. S., Mayevsky, A., Dobson, G. P., Veech, R. L., Subramanian, H., and Chance, B., 1991, Age dependence of steady state mitochondrial oxidative metabolism in the in vivo hypoxic dog brain, Neurol. Res. 13:25–32.

    PubMed  CAS  Google Scholar 

  • Rango, M., Lenkinski, R. E., Alves, W. M., and Gennarelli, T. A., 1990, Brain pH in head injury: An image-guided 31P magnetic resonance spectroscopy study, Ann. Neurol. 28:661–667.

    Article  PubMed  CAS  Google Scholar 

  • Ring, I. T., Berry, G., Dan, N. G., Kwok, B., Mandryk, J. A., North, J. B., Selecki, B. R., Sewell, M. F., Simpson, D. A., Steining, W. A., and Vanderfield, G. K., 1986, Epidemiology and clinical outcomes of neurotrauma in New South Wales, Aust. N. Z. J. Surg. 56:557–566.

    Article  PubMed  CAS  Google Scholar 

  • Roof, R. L., Duvdevani, R., and Stein, D. G., 1993, Gender influences outcome of brain injury: Progesterone plays a protective role, Brain Res. 607:333–336.

    Article  PubMed  CAS  Google Scholar 

  • Roth, K., Hubesch, B., Meyerhoff, D. J., Naruse, S., Gober, J. R., Lawry, T. J., Boska, M. D., Matson, G. B., and Weiner, M. W., 1989, Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy, J. Iagn. Reson. 81:299–311.

    Article  CAS  Google Scholar 

  • Siesjö, B. K., 1978, “Brain Energy Metabolism,” John Wiley & Sons, New York.

    Google Scholar 

  • Siesjö, B. K., 1988, Acidosis and ischemic brain damage, Neurochem. Pathol. 9:31–88.

    PubMed  Google Scholar 

  • Sims, N. R., and Pulsinelli, W. A., 1987, Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J. Neurochem. 49:1367–1374.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. H., Okiyama, K., Gennarelli, T. A., and McIntosh, T. K., 1993, Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury. Neurosci. Lett. 157:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, H. G., Martinez, J., Becker, D. P., Miller, J. D., Griffith, R., and Wist, A. O., 1976, Fluid-percussion model of mechanical brain injury in the cat, J. Neurosurg. 45:520–534.

    Article  Google Scholar 

  • Sutton, L. N., Wang, Z., Duhaime, A. C., Costarino, D., Sauter, R., and Zimmerman, R., 1995, Tissue lactate in pediatric head trauma: A clinical study using 1H NMR spectroscopy, Pediatr. Neurosurg. 22:81–87.

    Article  PubMed  CAS  Google Scholar 

  • Thulborn, K. R., and Ackerman, J. J. H., 1983, Absolute molar concentrations by NMR in inhomogenous B1. A scheme for analysis of in vivo metabolites, J. Magn. Reson. 55:357–371.

    Article  CAS  Google Scholar 

  • Unterberg, A., Andersen, B. J., Clarke, G. D., and Marmarou, A., 1988, Cerebral energy metabolism following fluid percussion brain injury in cats, J. Neurosurg. 68:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Vink, R., 1989, Phospholipase C activity reduces free magnesium concentration, Biochem. Biophvs. Res. Commun. 165:913–918.

    Article  CAS  Google Scholar 

  • Vink, R., 1993, Nuclear magnetic resonance characterization of secondary mechanisms following traumatic brain injury, Mol. Chem. Neuropathol. 18:279–297.

    Article  PubMed  CAS  Google Scholar 

  • Vink, R., McIntosh, T. K., Weiner, M. W., and Faden, A. I., 1987, Effects of traumatic brain injury an cerebral high energy phosphates and intracellular pH; A 31P magnetic resonance spectroscopy study, J. Cereb. Blood Flow Metab. 7:563–571.

    Article  PubMed  CAS  Google Scholar 

  • Vink, R., Faden, A. I., and McIntosh, T. K., 1988a, Changes in cellular bioenergetic state following graded traumatic brain injury in rats: Determination by phosphorus-31 magnetic resonance spectroscopy, J. Neurotrauma 5:365–380.

    Article  Google Scholar 

  • Vink, R., McIntosh, T. K., and Faden, A. I., 1988b, Treatment with the thyrotropin-releasing hormone analog CG3703 restores magnesium homeostasis following traumatic brain injury in rats, Brain Res. 460:184–188.

    Article  CAS  Google Scholar 

  • Vink, R., McIntosh, T. K., Demediuk, P., Weiner, M. W., and Faden, A. I.. 1988c, 31Р NMR characterization of graded traumatic brain injury in rats, Magn. Reson. Med. 6:37–48.

    Article  CAS  Google Scholar 

  • Vink, R., McIntosh, T. K., Demediuk, P., Weiner, M. W., and Faden, A. I., 1988d, Decline in intracellular free magnesium concentration is associated with irreversible tissue injury following brain trauma, J. Biol. Chem. 263:757–761.

    CAS  Google Scholar 

  • Vink, R., Head, V. A., Rogers, P. J., McIntosh, T. K., and Faden, A. I., 1990a, Mitochondrial metabolism following traumatic brain injury in rats, J. Neurotrauma 7:21–27.

    Article  CAS  Google Scholar 

  • Vink, R., McIntosh, T. K., Rhomhanyi, R., and Faden, A. I., 1990b, Opiate antagonist nalmefene improves intracellular free magnesium, bioenergetic state and neurologic outcome following traumatic brain injury in rats, J. Neurosci. 10:3524–3530.

    CAS  Google Scholar 

  • Vink, R., McIntosh, T. K., and Faden, A. I., 1991a, Magnesium in neurotrauma: Its role and therapeutic implications, in “Magnesium and Excitable Membranes” (P. Strata and E. Carbone, eds.), pp. 695–701, Springer-Verlag, Berlin.

    Google Scholar 

  • Vink, R., Portoghese, P. S., and Faden, A. I., 1991b, Kappa-opioid antagonist improves cellular bioenergetics and recovery after traumatic brain injury, Am. J. Phvsiol. 261:1527–1532.

    Google Scholar 

  • Vink, R., Golding, E. M., and Headrick, J. P., 1994, Bioenergetic analysis of oxidative metabolism following traumatic brain injury in rats, J. Neurotraumп 11:265–274.

    Article  CAS  Google Scholar 

  • Williams, S. R., Crockard, A., and Gadian, D. G., 1989, Cerebral ischemia studied by nuclear magnetic resonance spectroscopy, Cerebrovasc. Brain Metab. Rev. 1:91–114.

    PubMed  Google Scholar 

  • Yamakami, I., Vink, R., Faden, A. I., Gennarelli, T. A., Lenkinski, R., and McIntosh, T. K., 1995, Effects of acute ethanol intoxication on experimental traumatic brain injury in the rat: Neurobehavioral and 31P NMR studies, J. Neurosurg. 82:813–821.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., and Marmarou, A., 1991, Effects of tromethamine and hyperventilation on brain injury in the cat, J. Neurosurg. 74:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Young, W., and Constantini, S., 1994, Ionic and water shifts in injured central nervous tissues, in “The Neurobiology of Central Nervous System Trauma” (A. I. Faden and S. K. Salzman, eds.), pp. 123–130, Oxford University Press, New York.

    Google Scholar 

  • Zimmerman, R. A., Bilanuik, L. T., Hackney, D. B., Goldberg, H. I., and Grossman, R. I., 1986, Head injury: Early results of comparing CT and high-field MR, Am. J. Radial. 147:1215–1222.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Plenum Press, New York

About this chapter

Cite this chapter

Vink, R., McIntosh, T.K. (1997). Traumatic Brain Injury. In: Bachelard, H. (eds) Magnetic Resonance Spectroscopy and Imaging in Neurochemistry. Advances in Neurochemistry, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5863-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5863-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45520-9

  • Online ISBN: 978-1-4615-5863-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics