Skip to main content

Scanning Ultrasonic Microscopy with Phase Contrast

  • Chapter
Advances in Acoustic Microscopy

Part of the book series: Advances in Acoustic Microscopy ((AAMI,volume 2))

Abstract

Scanning acoustic microscopy (SAM) has been established since 1974(1) and has found a wide range of applications as well as numerous variations of the original method (see Ref. 2 for a general introduction and overview). It is still the exclusive alternative to optical microscopy in the field of classical wave microscopy, implying that waves in the “classical sense” are employed for observation. Unlike optical microscopy, the contrast in acoustical images is directly related to the mechanical properties of the sample and the coupling fluid, which has to be present in SAM to allow the propagation of acoustic waves between the focusing transducer device (“acoustic lens”) and the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lemons, R. A., Quate, C. F. (1974). Acoustic microscope—scanning version. Appl. Phys. Lett. 24, 163–165.

    Article  Google Scholar 

  2. Briggs, A. (1992). Acoustic Microscopy. Clarendon Press, Oxford.

    Google Scholar 

  3. Litniewski, I, and Bereiter-Hahn, J. (1990). Measurements of cells in culture by scanning acoustic microscopy. J. Microsc. (Oxford) 158, 95–107.

    Article  CAS  Google Scholar 

  4. Hildebrand, J. A., Liang, K., and Bennett, S. D. (1983). Fourier transform approach to numerical characterization with the acoustic microscope. J. Appl. Phys. 54, 7016–7019.

    Article  Google Scholar 

  5. Reinholdtsen, P. A., and Khuri-Yakub, B. T. (1991). Image processing for a scanning acoustic microscope that measures amplitude and phase. IEEE Trans. Ultrason. Ferroelectr. and Freq. Contr. 38(2), 141–147; and references therein.

    Article  CAS  Google Scholar 

  6. Sasaki, Y., Endo, T., Yamagishi, T., and Sakai, M. (1992). Thickness measurement of a thinfilm layer on an anisotropic substrate by phase-sensitive acoustic microscope. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 39(5), 638–642.

    Article  CAS  Google Scholar 

  7. Liang, K. K., Bennett, S. D., and Kino, G. S. (1986). Precision phase measurement with short tone burst signals in acoustic microscopy. Rev. Sci. Instrum. 57, 446–452.

    Article  CAS  Google Scholar 

  8. Markwitz, A., Baumann, H., Grill, W., Knop, A., Krimmel, E. F., and Bethge, K. (1994). Investigations of ultrathin silicon nitride layers produced by low-energy ion implantation and EB-RTA. Nucl. Instrum. Methods in Phys. Res. B 89, 362–368.

    Article  CAS  Google Scholar 

  9. Liang, K. K., Kino, G. S., and Khuri-Yakub, B. T. (1985). Material characterization by the inversion of V(z). IEEE Trans. Sonics Ultrason. SU-32, 213–224.

    Article  Google Scholar 

  10. Hillmann, K., Grill, W., and Bereiter-Hahn, J. (1994). Determination of ultrasonic attenuation in small samples of solid material by scanning acoustic microscopy with phase contrast. J. Alloys Compounds 211/212, 625–627.

    Article  Google Scholar 

  11. Würz, K. U., Wesner, J., Hillmann, K., and Grill, W. (1995). Determination of elastic constants using a scanning acoustic microscope. Z. Phys. B 97, 487–492.

    Article  Google Scholar 

  12. von Gutfeld, R. J., and Nethercot, A. H. (1964). Heat pulses in quartz and sapphire at low temperatures. Phys. Rev. Lett. 12, 641–643.

    Article  Google Scholar 

  13. Taylor, B., Maris, H. J., and Elbaum, C. (1969). Phonon focusing in solids. Phys. Rev. Lett. 23, 416–419.

    Article  CAS  Google Scholar 

  14. Taylor, B., Maris, H. J., and Elbaum, C. (1971). Focusing of phonons in crystalline solids due to elastic anisotropy. Phys. Rev. B 3, 1462–1472.

    Article  Google Scholar 

  15. Northrop, G. A., and Wolfe, J. P. (1980). Ballistic phonon imaging in germanium. Phys. Rev. B 22, 6196–6212.

    Article  CAS  Google Scholar 

  16. Hensel, J. C., and Dynes, R. C. (1979). Observation of singular behavior in the focusing of ballistic phonons in Ge. Phys. Rev. Lett. 43, 1033–1036.

    Article  CAS  Google Scholar 

  17. Ulbrich, R. G. (1985). In: Proceedings of a NATO Advanced Study Institute of Nonequilibrium Phonon Dynamics (W.E. Bron, ed.), Plenum Press, New York, pp. 101–127.

    Chapter  Google Scholar 

  18. Huebener, R. P. (1993). In: Phonon Scattering in Condensed Matter VII (M. Meissner and R. O. Pohl, eds.), Springer-Verlag, Berlin, pp. 63–67.

    Chapter  Google Scholar 

  19. Eichele, R., Hübener, R. P., and Seifert, H. (1982). Phonon focusing in quartz and sapphire imaged by electron beam scanning. Z. Phys. B 48, 89–97.

    Article  CAS  Google Scholar 

  20. Every, A. G. (1993). Thermal phonon imaging. In: Die Kunst of Phonons, (T. Paszkiewicz and K. Rapcewicz, eds.), Plenum Press, New York, pp. 55–71.

    Google Scholar 

  21. Rösch, F., and Weis, O. (1976). Geometric propagation of acoustic phonons in monocrystals within anisotropic continuum acoustics. Z. Phys. B 25, 101–122.

    Article  Google Scholar 

  22. Maris, H. J. (1983). Effect of finite phonon wavelength on phonon focusing. Phys. Rev. B 28, 7033–7037.

    Article  Google Scholar 

  23. Hauser, M. R., Weaver, R. L., and Wolfe, J. P. (1992). Internal diffraction of ultrasound in crystals: Phonon focusing at long wavelengths. Phys. Rev. Lett. 68, 2604–2607.

    Article  PubMed  CAS  Google Scholar 

  24. Weaver, R. L., Hauser, M. R., and Wolfe, J. P. (1993). Acoustic flux imaging in anisotropic media. Z. Phys. B 90, 27–46.

    Article  Google Scholar 

  25. Wesner, J., Würz, K. U., Hillmann, K., and Grill, W. (1993) In: Phonon Scattering in Condensed Matter VII (M. Meissner and R. O. Pohl, eds.), Springer-Verlag, Berlin, pp. 68–70.

    Chapter  Google Scholar 

  26. Truell, R., Elbaum, C., and Chick, B. B. (1969). Ultrasonic Methods in Solid State Physics, Academic Press, New York.

    Google Scholar 

  27. Gorodetsky, G., and Lachterman, I. (1981). Pulse-echo ultrasonic interferometer for the automatic measurements of velocity and attenuation changes. Rev. Sci. Instrum. 52, 1386–1387.

    Article  Google Scholar 

  28. Rokhlin, S. I., and Wang, W. (1992). Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materais. J. Acoust. Soc. Am. 91, 3303–3312.

    Article  Google Scholar 

  29. Chu, Y. C., and Rokhlin, S. I. (1994). Comparative analysis of through-transmission ultrasonic bulk wave methods for phase velocity measurements in anisotropic materials. J. Acoust. Soc. Am. 95, 3204–3212.

    Article  Google Scholar 

  30. Gornall, W. S., and Stoicheff, B. P. (1971). Determination of the elastic constants of xenon single crystals by Brillouin scattering. Phys. Rev. B 4, 4518–4535.

    Article  Google Scholar 

  31. Mendik, M., Sathish, S., Kulik, A., Gremaud, G., and Wachter, P. (1992). Surface acoustic wave studies on single-crystal nickel using Brillouin scattering and scanning acoustic microscope. J. Appl. Phys. 71, 2830–2834.

    Article  CAS  Google Scholar 

  32. Goto, T., and Anderson, O. L. (1988). Apparatus for measuring elastic constants of single crystals by a resonance technique up to 1825 K. Rev. Sci. Instrum. 59, 1405.

    Article  Google Scholar 

  33. Demarest, H. H., Jr. (1971). Cube-resonance method to determine the elastic constants of solids. J. Acoust. Soc. Am. 49, 768–775.

    Article  Google Scholar 

  34. Every, A. G., Sachse, W., Kim, K. Y., and Thompson, M. O. (1990). Phonon focusing and mode-conversion effects in silicon at ultrasonic frequencies. Phys. Rev. Lett. 65, 1446–1449.

    Article  PubMed  CAS  Google Scholar 

  35. Every, A. G., Kim, K. Y., and Sachse, W. (1993). Phonon imaging at ultrasonic frequencies: The dynamic response of anisotropic solids. In: Die Kunst of Phonons (T. Paszkiewicz and K. Rapcewicz, eds.), Plenum Press, New York, pp. 73–85.

    Google Scholar 

  36. Every, A. G., and Sachse, W. (1990). Determination of the elastic constants of anisotropic solids from acoustic-wave group-velocity measurements. Phys. Rev. B 42, 8196–8205.

    Article  Google Scholar 

  37. Every, A. G., and Sachse, W. (1991). Imaging of laser-generated ultrasonic waves in silicon. Phys. Rev. B 44, 6689–6699.

    Article  Google Scholar 

  38. Chai, J. F., and Wu, T. T. (1994). Determinations of anisotropic elastic constants using laser-generated surface waves. J. Acoust. Soc. Am. 95, 3232–3241.

    Article  Google Scholar 

  39. Kim, K. Y., and Sachse, W. (1993). Determination of all elastic constants of transversely isotropic media with a cusp around the symmetric axis by use of elastic pulses propagating in two principal directions. Phys. Rev. B 47, 10993–11000.

    Article  CAS  Google Scholar 

  40. Every, A. G., and McCurdy, A. K. (1987). Phonon focusing in piezoelectric crystals. Phys. Rev. B 36, 1432–1447.

    Article  Google Scholar 

  41. Šutilov, V. A. (1984). Physik des Ultraschalls, Akademie-Verlag, Berlin.

    Book  Google Scholar 

  42. Auld, B. A. (1990). Acoustic Fields and Waves in Solids, Robert E. Krieger, Huntington, NY.

    Google Scholar 

  43. Northrop, G. A. (1982). Acoustic phonon anisotropy: Phonon focusing. Computer Phys. Commun. 28, 103–106.

    Article  Google Scholar 

  44. Rokhlin, S. I., Bolland, T. K., and Adler, L. (1986). Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media. J. Acoust. Soc. Am. 79, 906–918.

    Article  Google Scholar 

  45. Press, W.H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd ed., Cambridge University Press, London.

    Google Scholar 

  46. Würz, K. U. (1995). Ultraschallmikroskopische Untersuchungen der akustischen Anisotropie von Einkristallen. Dissertation, Frankfurt am Main.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grill, W., Hillmann, K., Würz, K.U., Wesner, J. (1996). Scanning Ultrasonic Microscopy with Phase Contrast. In: Briggs, A., Arnold, W. (eds) Advances in Acoustic Microscopy. Advances in Acoustic Microscopy, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5851-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5851-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7682-8

  • Online ISBN: 978-1-4615-5851-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics