Skip to main content

The Effects of Tumor Heterogeneity on the Flow Cytometric Analysis of Clinical Specimens

  • Chapter
  • 131 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 286))

Abstract

A combination of accelerated mutation rates and the presence of numerous different cell types in solid tumors creates a degree of stemline and cellular heterogeneity that constitutes a considerable challenge to the flow cytometric analysis of prognostic parameters. While multi-site sampling can circumvent the effect of stemline heterogeneity (2), the solution to the problem of cellular heterogeneity is less straightforward, and has, until relatively recently, been hampered by technological limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasyev VN, Korol BA, Matylevich NP, Pechatnikov VA, Umansky SR: The use of flow cytometry for the investigation of cell death. Cytometry 14:603–609, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Barranco SC, Perry RR, Durm ME, Werner AL, Gregorcyk SG, Bolton WE, Kolm P, Townsend Jr. CM. Intratumor variability in prognostic indicators may be the cause of conflicting estimates of patient survival and response to therapy. Cancer Res 54:5351–5356, 1994.

    PubMed  CAS  Google Scholar 

  3. Bolton WE, Mikulka WR, Healy CG, Schmittling RJ, Kenyon NS: Expression of Proliferation Associated Antigens in the Cell Cycle of Synchronized Mammalian Cells. Cytometry 13:117–126, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Bolton WE, Zeng XR, Lee MYWT, Mikulka W: Expression of PCNA and DNA Polymerase Delta in the Cell Cycle of Synchronized Mammalian Cells. Journal of Cancer Molecular Biology, 1, 193–197, 1994.

    CAS  Google Scholar 

  5. Bolton WE, Freeman JW, Mikulka WR, Healy CG, Kenyon NS: Expression of Proliferation-Associated Antigens (PCNA, pi20, pl45) during the reentry of G0 cells into the Cell Cycle. Cytometry 17:66–74, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Clevenger CV, Shankey TV: Cytochemistry II: Immunofluorescence measurement of intracellular antigens. In: Clinical Flow Cytometry: Principles and Applications, Bauer KD, Duque RE, Shankey TV (eds). Williams & Wilkins, Baltimore, 1993, pp. 157–175.

    Google Scholar 

  7. Columbano A: Cell death: Current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cellular Biochem 58:181–190, 1995.

    Article  CAS  Google Scholar 

  8. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F: Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808, 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Gorczyca W, Gong J, Darzynkiewicz Z: Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 53:1945–1951, 1993.

    PubMed  CAS  Google Scholar 

  10. Gorczyca W, Tuziak T, Kram A, Melamed MR, Darzynkiewicz Z: Detection of apoptosis-associated DNA strand breaks in fine-needle aspiration biopsies by in situ end labeling of fragmented DNA. Cytometry 15:169–175, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Healy CG, Kenyon NS, Bolton WE: Expression of Proliferation Associated Antigens PCNA, pi45 and Ki67 during cell cycle progression in activated peripheral blood lymphocytes: Potential utility in monitoring hematologic malignancies. Journal Cancer Molecular Biology, Vol. 1, No. 1, 59–60, 1994.

    CAS  Google Scholar 

  12. Lockshin RA, Zakeri ZF: Physiology and protein synthesis in programmed cell death: Early synthesis and DNA degradation. Ann NY Acad Sei 663:234–249, 1992.

    Article  CAS  Google Scholar 

  13. Mikulka WR, Bolton WE: Methodologies for the preservation of Proliferation Associated Antigens PCNA, pi20, and pi05 in tumor cell lines for use in flow cytometry. Cytometry 17:246–257, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. O’Brien MC, Gupta RK, Lee SY, Bolton WE: Use of a multiparametric panel to target subpopulations in a heterogeneous solid tumor model for improved analytical accuracy. Cytometry 21:76–83, 1995.

    Article  PubMed  Google Scholar 

  15. Paine ML, Gibbins JR, Chew KE, Demetrious A, Kefford RF: Loss of keratin expression in anaplastic carcinoma cells due to posttranscriptional down-regulation acting in trans. Cancer Res 52:6603–6611, 1992.

    PubMed  CAS  Google Scholar 

  16. Peterson JA, Zava DT, Duwe AK, Blank EW, Battifora H, Ceriani RL: Biochemical and histological characterization of antigens preferentially expressed on the surface and cytoplasm of breast carcinoma cells identified by monoclonal antibodies against the human milk fat globule. Hybridoma 9:221–235, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Riedy MC, Muirhead KA, Jensen CP, Stewart CC: Use of a photolabeling technique to identify nonviable cells in fixed homologous or heterologous populations. Cytometry 12:133–139, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Shankey TV, Rabinovitch PS, Bagwell B, Bauer KD, Duque RE, Hedley DW, Mayall BH, Wheeless L: Guidelines for implementation of DNA cytometry. Cytometry 14:472–77, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Terstappen LWMM, Shah VO, Conrad MP, Recktenwald D, Loken MR: Discriminating between damaged and intact cells in fixed flow cytometric samples. Cytometry 9:477–484, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Visscher DW, Zarbo RJ, Jacobsen G, Kambouris A, Talpos G, Sakr W, Crissman JD: Multiparametric deoxyribonucleic acid and cell cycle analysis of breast carcinomas by flow cytometry: Clinicopathologic correlations. Lab Invest 62:370–378, 1990.

    PubMed  CAS  Google Scholar 

  21. Wing MG, Montgomery AMP, Songsivilai S, Watson JV An improved method for the detection of cell surface antigens in samples of low viability using flow cytometry. J Immunol Meth 126:21–27, 1990.

    Article  CAS  Google Scholar 

  22. Wingren S, Stål O, Carstensen J, Sun XF, Nordenskjöld B. S-phase determination of immunoselected cytokeratin-containing breast cancer cells improves the prediction of recurrence. Breast Cancer Res and Treatment 29:179–187, 1993.

    Article  Google Scholar 

  23. Wingren S, Stål O, Nordenskjöld B. Flow cytometric analysis of S-phase fraction in breast carcinomas using gating on cells containing cytokeratin. Br J Cancer 69:546–549, 1994.

    Article  PubMed  CAS  Google Scholar 

  24. Zamai L, Bareggi R, Santavenere E, Vitale M. Subtraction of autofluorescent dead cells from the lymphocyte flow cytometric binding assay. Cytometry 14:951–954 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. Zarbo RJ, Visscher DW, Crissman JD. Two-color multiparametric method for flow cytometric DNA analysis of carcinomas using staining for cytokeratin and leukocyte-common antigen. Anal Quant Cytol Histol 11:391–402, 1989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bolton, W.E., O’Brien, M. (1996). The Effects of Tumor Heterogeneity on the Flow Cytometric Analysis of Clinical Specimens. In: Kohen, E., Hirschberg, J.G. (eds) Analytical Use of Fluorescent Probes in Oncology. NATO ASI Series, vol 286. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5845-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5845-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7679-8

  • Online ISBN: 978-1-4615-5845-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics