Skip to main content

The IR Vibrational Properties of Composite Solids and Particles: The Lyddane-Sachs-Teller Relation Revisited

  • Chapter
Spectroscopy and Dynamics of Collective Excitations in Solids

Part of the book series: NATO ASI Series ((NSSB,volume 356))

Abstract

Hot pressed zinc sulfide, dispersion hardened with diamond particles has turned out to be an ideal material in which to explore the optical complexity introduced by perhaps the simplest optical composite structure. Because the transverse vibrational mode of ZnS is IR active while that of diamond is IR inactive, the vibrational polarization properties of the resulting medium are extremely inhomogeneous at far infrared frequencies. This novel system has turned out to be extremely useful for identifying the important dynamical features underlying the optical properties of all transparent composites and complex dielectrics. One result of far ir measurements of the reststrahlen region of this system is the discovery of a generalized Lyddane-Sachs-Teller (LST) relation for solids and liquids. The characteristic dynamical frequencies are defined in terms of second moments of the relevant response functions, and very general causality arguments are used to obtain the generalized LST relation. The measured electronic excitation properties of silicon have been used to illustrate the generality of the resulting relation, which provides a useful connection between the long-wavelength dynamical behavior of nonmetallic condensed media and their static and high-frequency dielectric properties. When the characteristic vibrational frequencies of small disordered dielectric particles are described in terms of optical moments of the appropriate response functions, a generalized Fröhlich relation follows which connects the second moment of the small particle response function to the dc dielectric properties of the particle. This result is then used to obtain a new representation for the Clausius-Mossotti relation. Finally, the frequency dependent extinction cross section of an ellipsoidal particle of arbitrary size is examined from the same perspective of sum rules and optical moments. A number of general results can be found. It is demonstrated here that an extinction strength sum rule exists which directly relates the effective number of oscillators in the scattering particle to the integral over the extinction cross section spectrum, independent of particle shape. In addition, the characteristic frequency for the extinction cross section spectrum has the interesting property of being independent of particle size. It is also shown that the frequency expression characterizing the extinction properties of an ellipsoid of arbitrary size has the same form as the Fröhlich relation for small single crystal particles. The expression agrees with the generalized Fröhlich relation that relates the squared frequency characterizing the absorption behavior of an ellipsoid in the Rayleigh limit with the small particle dielectric constant. The end result is that there is a much stronger connection between the scattering and absorptive properties of a large disordered particle and the absorptive properties of a small single crystalline particle than previously recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).

    Article  CAS  Google Scholar 

  2. H. Fröhlich, Theory of Dielectrics (Clarendon Press, Oxford, 1949).

    Google Scholar 

  3. W. Cochran, Phys. Rev. Lett. 3, 521 (1959).

    Article  Google Scholar 

  4. W. Cochran, Advan. Phys. 9, 387 (1960).

    Article  CAS  Google Scholar 

  5. A. S. Barker, Phys. Rev. A 136, 1290 (1964).

    CAS  Google Scholar 

  6. A. S. Barker, in Ferroelectrics, edited by E.F. Weiler (Elsevier, Amsterdam, 1967), p. 213.

    Google Scholar 

  7. A. S. Barker, Phys. Rev. B 12, 4071 (1975).

    Article  Google Scholar 

  8. G. Burns and B. A. Scott, Sol. State Commun. 13, 417 (1973).

    Article  CAS  Google Scholar 

  9. Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. C 13, 3761 (1980).

    Article  CAS  Google Scholar 

  10. J. P. Sokoloff, L. I. Chase, and D. Rytz, Phys. Rev. B 38, 597 (1988).

    Article  CAS  Google Scholar 

  11. S. A. FitzGerald, T. W. Noh, A. J. Sievers, L. A. Xue, and Y. Tzou, Phys. Rev. B 42, 5469 (1990).

    Article  CAS  Google Scholar 

  12. T. W. Noh and A. J. Sievers, Phys. Rev. Lett. 63, 1800 (1989).

    Article  Google Scholar 

  13. A. J. Sievers and J. B. Page, Phys. Rev. B 41, 3455 (1990).

    Article  Google Scholar 

  14. D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).

    CAS  Google Scholar 

  15. D. Y. Smith, in Handbook of Optical Constants of Solids, edited by E. Palik (Academic Press, New York, 1985), Vol. I

    Google Scholar 

  16. A. J. Sievers and J. B. Page, Infrared Phys. 32, 425 (1991).

    Article  CAS  Google Scholar 

  17. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984), p. p. 282.

    Google Scholar 

  18. D. F. Edwards, in Handbook of Optical Constants of solids, edited by E.D. Palik (Academic Press, New York, 1985), p. 554.

    Google Scholar 

  19. J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).

    Article  CAS  Google Scholar 

  20. J. A. Van Vechten, Pjys. Rev. 182, 891 (1969).

    Article  Google Scholar 

  21. S. H. Wemple and M. DiDomenico, Phys. Rev. B 3, 1338 (1971).

    Article  Google Scholar 

  22. J. J. Hopfield, Phys. Rev. B 2, 973 (1970).

    Article  Google Scholar 

  23. P. C. Hohenberg and W. Brinkman, Phys. Rev. B 10, 128 (1974).

    Article  CAS  Google Scholar 

  24. M. F. Thorpe and S. W. de Leeuw, Phys. Rev. B 33, 8490 (1986).

    Article  Google Scholar 

  25. A. J. Sievers, Solar Energy Mat. & Solar Cells 32, 451 (1993).

    Article  Google Scholar 

  26. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, London, 1954), p. 108.

    Google Scholar 

  27. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    Google Scholar 

  28. A. J. Sievers and J. B. Page, Phys. Rev. B 41, 12562 (1990).

    Article  Google Scholar 

  29. B. Szigeti, Trans. Faraday Soc. 45, 155 (1949).

    Article  CAS  Google Scholar 

  30. A. J. Sievers, T. W. Noh, and J. B. Page, Physica A 207, 46 (1994).

    Article  CAS  Google Scholar 

  31. E. M. Purcell, Ap. J. 158, 433 (1969).

    Article  Google Scholar 

  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

    Google Scholar 

  33. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975), p. 454.

    Google Scholar 

  34. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

    Google Scholar 

  35. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

    Google Scholar 

  36. A. J. Sievers, Optics Commun. 109, 71 (1994).

    Article  Google Scholar 

  37. R. Lai and A. J. Sievers, Optics Commun. 116, 72 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sievers, A.J. (1997). The IR Vibrational Properties of Composite Solids and Particles: The Lyddane-Sachs-Teller Relation Revisited. In: Di Bartolo, B., Kyrkos, S. (eds) Spectroscopy and Dynamics of Collective Excitations in Solids. NATO ASI Series, vol 356. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5835-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5835-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7675-0

  • Online ISBN: 978-1-4615-5835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics