Skip to main content

Selective Proteolysis: 70-kDa Heat-Shock Protein and Ubiquitin-Dependent Mechanisms?

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 27))

Abstract

The proteolysis of the vast majority of cytoplasmic proteins, once inside the lysosome compartment, would be expected to occur rapidly; therefore, the rate-limiting step in the lysosomal degradation of cytoplasmic proteins must be their initial sequestration. Indeed, the initial sequestration serves to remove cytoplasmic proteins from their functional site in the cell. Bulk sequestration of cytoplasm (macro-autophagy), described elsewhere in this volume (Chapter 4), is considered essentially nonselective. Microautophagy has been described by a number of investigators over the years (see Chapter 4) and may provide a mechanism for the selective sequestration of cytoplasmic proteins into the lysosome system. However, controversy surrounds the whole topic of selective lysosomal proteolysis, with some investigators probably of the view that the lysosome system is entirely nonselective. However, recent work from the laboratory of Dice (Dice, 1990) describes a selective mechanism of sequestration of cytosolic proteins into lysosomes for degradation in a process regulated by serum and involving a member of the 70-kDa heat-shock protein family.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amenta, J. S., Baccino, F. M. and Sargus, M. J., 1976, Cell protein degradation in cultured rat embryo fibroblasts, Biochim. Biophys. Acta 451:511–516.

    Article  CAS  Google Scholar 

  • Amenta, J. S., Hlivko, T. J., MacBee, A. G., Shinozuka, H., and Brocher, S., 1978, Specific inhibition by NH4Cl of autophagy-associated proteolysis in cultured fibroblasts, Exp. Cell Res. 115:357–366.

    Article  CAS  Google Scholar 

  • Apfel, R., Lottspeich, F., Hoppe, J., Behl, C., Durr, G., and Bogdahn, U., 1992, Purification and analysis of growth-regulating proteins secreted by a human-melanoma cell-line, Melanoma Res. 2:327–336.

    Article  CAS  Google Scholar 

  • Arnold, J. E., Tipler, C., László, L., Hope, J., Landon, M., and Mayer, R. J., 1995, The abnormal form of the prion protein accumulates in endosomeJlysosome-like organelles in scrapie-infected mouse brain, J. Pathol. 177:403–411.

    Article  Google Scholar 

  • Aubry, L., Klein, G., Martiel, J. L., and Satre, M., 1993, Kinetics of endosomal pH evolution in Dictyostelium discoideum amoebas—study by fluorescence spectroscopy, J. Cell Sci. 105:861–866.

    CAS  Google Scholar 

  • Backer, J., Bourret, L., and Dice, J., 1983, Regulation of degradation of microinjected ribonuclease A requires the amino-terminal 20 amino acids, Proc. Natl. Acad. Sci. USA 80:2166–2170.

    Article  CAS  Google Scholar 

  • Backer, J. M. and Dice, J. F., 1986, Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced during serum withdrawal, Proc. Natl. Acad. Sci. USA 83:5830–5834.

    Article  CAS  Google Scholar 

  • Ballard, F. J., Knowles, S. E., Wong, S. S. C., Bodner, J. B., Wood, C. M., and Gunn, J. M., 1980, Inhibition of protein breakdown in cultured cells is a consistent response to growth factors, FEBS Lett. 114:209–212.

    Article  CAS  Google Scholar 

  • Becker, J., and Craig, E. A., 1994, Heat shock proteins as molecular chaperones, Eur. J. Biochem. 219:11–23.

    Article  CAS  Google Scholar 

  • Beers, E. P., Moreno, T. N., and Callis, J., 1992, Subcellular localization of ubiquitin and ubiquitinated proteins in Arabidopsis thaliana, J. Biol. Chem. 267:15432–15439.

    CAS  Google Scholar 

  • Cenciarelli, C., Hou, D., Hsu, K. C., Rellahan, B. L., Wiest, D. L., Smith, H. T., Fried, V. A., and Weissman, A. M., 1992, Activation-induced ubiquitination of the T-cell antigen receptor, Science 257:795–797.

    Article  CAS  Google Scholar 

  • Chen, Y. P., Pioli, D., and Piper, P. W., 1994, Overexpression of the gene for polyubiquitin in yeast confers increased secretion of a human-leukocyte protease inhibitor, Biotechnology 12:819–823.

    Article  CAS  Google Scholar 

  • Chiang, H.-L., and Dice, J. F., 1988, Peptide sequences that target proteins for enhanced degradation during serum withdrawal, J. Biol. Chem. 263:6797–6805.

    CAS  Google Scholar 

  • Chiang, H.-L., Terlecky, S. T., Plant, C. P., and Dice, J. F., 1989, A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins, Science 246:382–384.

    Article  CAS  Google Scholar 

  • Ciechanover, A., 1994, The ubiquitin-mediated proteolytic pathway: Mechanisms of action and cellular physiology, Biol. Chem. Hoppe-Seyler 375:565–581.

    CAS  Google Scholar 

  • Cuervo, A. M., Terlecky, S. R., Dice, J. F., and Knecht, E., 1994, Selective binding and uptake of ribonuclease-A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat-liver lysosomes, J. Biol. Chem. 269:26374–26380.

    CAS  Google Scholar 

  • Deluca-Flaherty, C., McKay, D. B., Parham, P., and Hill, B. L., 1990, Uncoating protein (Hsc70) binds a conformationally labile domain of clathrin light chain LCa to stimulate ATP hydrolysis, Cell 62:875–887.

    Article  CAS  Google Scholar 

  • Dice, J. F., 1990, Peptide sequences that target cytosolic proteins for lysosomal proteolysis, Trends Biochem. Sci. 15:305–309.

    Article  CAS  Google Scholar 

  • Dice, J. F., and Chiang, H.-L., 1989, Lysosomal degradation of microinjected proteins, in Current Trends in the Study of Protein Degradation I (E. Knecht and S. Grisolia, eds.), pp. 13–33, Springer International, Bilbao.

    Google Scholar 

  • Dice, J. F., Chiang, H.-L., Spencer, E. P., and Backer, J. M., 1985, Lysosomal degradation of ribonuclease-A and ribonuclease-S-protein microinjected into the cytosol of human fibroblasts, J. Biol. Chem. 260:1986–1993.

    Google Scholar 

  • Dice, J. F., Chiang, H.-L., and Spencer, E., 1986, Regulation of catabolism of microinjected ribonuclease A: Identification of residues 7–11 as the essential pentapeptide J. Biol. Chem. 261:6853–6859.

    CAS  Google Scholar 

  • Doherty, E J., Osbora, N. U., Wassell, J. A., Heggie, P.E., László, L., and Mayer, R. J., 1989a, Ubiquitin-protein conjugates accumulate in the lysosomal system of fibroblasts treated with cysteine proteinase inhibitors, Biochem. J. 263:47–55.

    CAS  Google Scholar 

  • Doherty, E J., Osborn, N. U., Wassell, J. A., László, L., and Mayer, R. J., 1989b, Insoluble disulfide cross-linked polypeptides accumulate in the functionally compromised lysosomes of fibroblasts treated with the cysteine protease inhibitor E-64, Exp. Cell Res. 185:506–518.

    Article  CAS  Google Scholar 

  • Dowbenko, D. J., Diep, A., Taylor, B. A., Lusis, A. J., and Lasky, L. A., 1991, Characterization of the murine homing receptor gene reveals correspondence between protein domains and coding exons, Genomics 9:270–277.

    Article  CAS  Google Scholar 

  • Ellis, R. J., and Vandervies, S. M., 1991, Molecular chaperones, Annu. Rev. Biochem. 60:321–347.

    Article  CAS  Google Scholar 

  • Finley, D., and Chau, V., 1991, Ubiquitination, Annu. Rev. Cell Biol. 7:25–69.

    Article  CAS  Google Scholar 

  • Finley, D., Ciechanover, A., and Varshavsky, A., 1984, Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37:43–55.

    Article  CAS  Google Scholar 

  • Galan, J. M., Volland, C., Urbangrimal, D., and Haguenauertsapis, R., 1994, The yeast plasma-membrane uracil permease is stabilized against stress-induced degradation by a point mutation in a cyclin-like destruction box, Biochem. Biophys. Res. Commun. 201:769–775.

    Article  CAS  Google Scholar 

  • Goldberg, A. L., and Rock, K. L., 1992, Proteolysis, proteasomes and antigen presentation, Nature 357:375–379.

    Article  CAS  Google Scholar 

  • Gropper, R., Brandt, R. A., Elias, S., Bearer, C. F., Mayer, A., Schwartz, A. L., and Ciechanover, A., 1991, The ubiquitin-activating enzyme, El, is required for stress-induced lysosomal degradation of cellular proteins, J. Biol. Chem. 266:3602–3610.

    CAS  Google Scholar 

  • Guarino, L. A., Smith, G., and Dong, W., 1995, Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor, Cell 80:301–309.

    Article  CAS  Google Scholar 

  • Hendil, K., 1977, Intracellular protein degradation in growing, in density-inhibited and in serum restricted fibroblast cultures, J. Cell. Physiol. 92:353–364.

    Article  CAS  Google Scholar 

  • Hershko, A., 1991, The ubiquitin pathway of protein degradation and proteolysis of ubiquitin-protein conjugates, Biochem. Soc. Trans. 19:726–729.

    CAS  Google Scholar 

  • Hershko, A., and Ciechanover, A., 1992, The ubiquitin system for protein degradation, Annu. Rev. Biochem. 61:761–807.

    Article  CAS  Google Scholar 

  • Hingamp, P., Arnold, J. E., Mayer, R. J., and Dixon, L. K., 1992, A ubiquitin conjugating enzyme encoded by African swine fever virus, EMBO J. 11:361–366.

    CAS  Google Scholar 

  • Hingamp, P. M., Leyland, M. L., Webb, J., Twigger, S., Mayer, R. J., and Dixon, L. K., 1995, Characterisation of a ubiquitinated protein which is externally located in African swine fever virus, J. Virol. 69:1785–1793.

    CAS  Google Scholar 

  • Humbert, M., Bertolino, P., Forquet, F., Rabourdincombe, C., Gerlier, D., Davoust, J., and Salamero, J., 1993, Major histocompatibility complex class II-restricted presentation of secreted and endoplasmic reticulum resident antigens requires the invariant chains and is sensitive to lysosomotropic agents, Eur. J. Immunol. 23:3167–3172.

    Article  CAS  Google Scholar 

  • Jentsch, S., 1992, The ubiquitin-conjugation system, Annu. Rev. Genet. 26:179–207.

    Article  CAS  Google Scholar 

  • Jund, R., Weber, E., and Chevallier, M. R., 1988, Primary structure of the uracil transport protein of Saccharomyces-cerevisiae, Eur. J. Biochem. 171:417–4

    Article  CAS  Google Scholar 

  • Kenward, N., Fergusson, J., Landon, M., Hope, J., McDermott, H., McQuire, D., Lowe, J., and Mayer, R. J., 1992, Early detection of ubiquitin-protein conjugate immunoreactivity in scrapie, J. Cell Biochem. 16E:212.

    Google Scholar 

  • Rolling, R., and Hollenberg, C. P., 1994, The ABC-transporter Ste6 accumulates in the plasma-membrane in a ubiquitinated form in endocytosis mutants, EMBO J. 13:3261–3271.

    Google Scholar 

  • Lai, K., Bolognese, C. P., Swift, S., and McGraw, P., 1995, Regulation of inositol transport in saccharomyces-cerevisiae involves inositol-induced changes in permease stability and endocytic degradation in the vacuole, J., Biol. Chem. 270:2525–2534.

    Article  CAS  Google Scholar 

  • László, L., Doherty, F. J., Osborn, N. U., and Mayer, R. J., 1990, Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts, FEBS Lett. 261:365–368.

    Article  Google Scholar 

  • László, L., Doherty, F. J., Watson, A., Self, T., Landon, M., Lowe, J., and Mayer, R. J., 1991a, Immunogold localization of ubiquitin-protein conjugates in primary (azurophilic) granules of polymorphonuclear neutrophils, FEBS Lett. 279:175–178.

    Article  Google Scholar 

  • László, L., Tuckwell, J., Self, T., Lowe, J., Landon, M., Smith, S., Hawthorne, J. N., and Mayer, R. J., 1991b, The latent membrane protein-1 in Epstein-Barr virus-transformed lymphoblastoid cells is found with ubiquitin-protein conjugates and heat-shock protein-70 in lysosomes oriented around the microtubule organizing centre, J. Pathol. 164:203–214.

    Article  Google Scholar 

  • László, L., Lowe, J., Self, T., Kenward, N., Landon, M., McBride, T., Farquhar, C., McConnell, I., Brown, J., Hope, J., and Mayer, R. J., 1992, Lysosomes are key organelles in the pathogenesis of prion encephalopathies, J. Pathol. 166:333–341.

    Article  Google Scholar 

  • Lenk, S. E., Dunn, W. A., Trausch, J. S., Ciechanover, A., and Schwartz, A. L., 1992, Ubiquitinactivating enzyme, El, is associated with maturation of autophagic vacuoles, J. Cell Biol. 118:301–308.

    Article  CAS  Google Scholar 

  • Leustek, T., Dalie, B., Amirshapira, D., Brot, N., and Weissbach, H., 1989, A member of the hsp70 family is localized in mitochondria and resembles Escherichia-coli DNAK, Proc. Natl. Acad. Sci. USA 86:7805–7808.

    Article  CAS  Google Scholar 

  • Löw, P., Doherty, F. J., Sass, M., Kovacs, J., Mayer, R. J., and László, L., 1993, Immunogold localisation of ubiquitin protein conjugates in Sf9 insect cells—implications for the biogenesis of lysosome-related organelles, FEBS Lett. 316:152–156.

    Article  Google Scholar 

  • Löw, P., Doherty, F. J., Fellinger, E., Sass, M., Mayer, R. J., and László, L., 1995, Related organelles of the endosome-lysosome system contain a different repertoire of ubiquitinated proteins in Sf9 insect cells, FEBS Lett. 368:125–131.

    Article  Google Scholar 

  • Lowe, J., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., and Mayer, R. J., 1988a, Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease, J. Pathol. 155:9–15.

    Article  CAS  Google Scholar 

  • Lowe, J., Lennox, G., Jefferson, D., Morrell, K., McQuire, D., Gray, T., Landon, M., Doherty, F. J., and Mayer, R. J., 1988b, A filamentous inclusion body within anterior horn neurones in motor neurone disease defined by immunocytochemical localisation of ubiquitin, Neurosci. Lett. 94:203–210.

    Article  CAS  Google Scholar 

  • Mayer, R. J., Tipler, C., László, L., Arnold, J., Lowe, J., and Landon, M., 1994, Endosome-lysosomes and neurodegeneration, Biomed. Pharmacother. 48:282–286.

    Article  CAS  Google Scholar 

  • Meyer, E. M., West, C. M., Stevens, B. R., Chau, V., Nguyen, M. T., and Judkins, J. H., 1987, Ubiquitin-directed antibodies inhibit neuronal transporters in rat brain synaptosomes, J. Neurochem. 49:1815–1819.

    Article  CAS  Google Scholar 

  • Mori, H., Kondo, J., and Ihara, Y., 1987, Ubiquitin is a component of paired helical filaments in Alzheimer’s disease, Science 235:1641–1644.

    Article  CAS  Google Scholar 

  • Mori, S., Heldin, C. H., and Claesson-Welsh, L., 1992, Ligand-induced polyubiquitination of the platelet-derived growth factor beta-receptor, J. Biol. Chem. 267:6429–6434.

    CAS  Google Scholar 

  • Mori, S., Heldin, C. H., and Claessonwelsh, L., 1993, Ligand-induced ubiquitination of the plateletderived growth factor beta-receptor plays a negative regulatory role in its mitogenic signaling, J. Biol. Chem. 268:577–583.

    CAS  Google Scholar 

  • Nelson, K. K., and Lemmon, S. K., 1993, Suppressors of clathrin deficiency—overexpression of ubiquitin rescues lethal strains of clathrin-deficient Saccharomyces-cerevisiae, Mol. Cell. Biol. 13:521–532.

    CAS  Google Scholar 

  • Overly, C. C., Lee, K. D., Berthiaume, E., and Hollenbeck, P. J., 1995, Quantitative measurement of intraorganelle pH in the endosomal lysosomal pathway in neurons by using ratiometric imaging with pyranine, Proc. Natl. Acad. Sci. USA 92:3156–3160.

    Article  CAS  Google Scholar 

  • Paolini, R., and Kinet, J.-P., 1993, Cell surface control of the multi-ubiquitination and de-ubiquitination of high-affinity immunoglobulin E receptors, EMBO J. 12:779–786.

    CAS  Google Scholar 

  • Prusiner, S. B., 1989, Scrapie prions, Ann. Rev. Microbiol. 43:345–374.

    Article  CAS  Google Scholar 

  • Rothman, J. E., 1989, Polypeptide chain binding proteins—catalysts of protein folding and related processes in cells, Cell 59:591–601.

    Article  CAS  Google Scholar 

  • Schirmbeck, R., and Reimann, J., 1994, Peptide transporter-independent, stress protein-mediated endosomal processing of endogenous protein antigens for major histocompatibility complex class-I presentation, Eur. J. Immunol. 24:1478–1486.

    Article  CAS  Google Scholar 

  • Schwartz, A. L., Ciechanover, A., Brandt, R. A., and Geuze, H. J., 1988, Immunoelectron microscopic localization of ubiquitin in hepatoma cells, EMBO J. 7:2961–2966.

    CAS  Google Scholar 

  • Schwartz, A. L., Brandt, R. A., Geuze, H., and Ciechanover, A., 1992, Stress-induced alterations in autophagic pathway—relationship to ubiquitin system, Am. J. Physiol. 262:C1031–C1038.

    CAS  Google Scholar 

  • Seufert, W., and Jentsch, S., 1990, Ubiquitin-conjugating enzymes Ubc4 and Ubc5 mediate selective degradation of short-lived and abnormal proteins, EMBO J. 9:543–550.

    CAS  Google Scholar 

  • Siegelman, M., Bond, M. W., Gallatin, W. M., John, T. S., Smith, H. T., Fried, V. A., and Weissman, I. L., 1986, Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein, Science 231:823–829.

    Article  CAS  Google Scholar 

  • Simeon, A., Vanderklei, I. J., Veenhuis, M., and Wolf, D. H., 1992, Ubiquitin, a central component of selective cytoplasmic proteolysis, is linked to proteins residing at the locus of non-selective proteolysis, the vacuole, FEBS Lett. 301:231–235.

    Article  CAS  Google Scholar 

  • Slot, L. A., Lauridsen, A. M. B., and Hendil, K. B., 1986, Intracellular protein-degradation in serum-deprived human-fibroblasts, Biochem. J. 237:491–498.

    CAS  Google Scholar 

  • Spencer, S. A., Hammonds, R. G., Henzel, W. J., Rodriguez, H., Waters, M. J., and Wood, W. I., 1988, Rabbit liver growth hormone receptor and serum binding protein. Purification, characterization, and sequence, J. Biol Chem. 263:7862–7867.

    CAS  Google Scholar 

  • St. John, T., Gallatin, W. M., Siegelman, M., Smith, H. T., Fried, V. A., and Weissman, I. L., 1986, Expression cloning of a lymphocyte homing receptor cDNA—ubiquitin is the reactive species, Science 231:845–850.

    Article  CAS  Google Scholar 

  • Stuart, R. A., Cyr, D. M., and Neupert, W., 1994, Hsp70 in mitochondrial biogenesis: From chaperoning nascent polypeptide chains to facilitation of protein degradation, Experientia 50:1002–1011.

    Article  CAS  Google Scholar 

  • Vanwhy, S. K., Hildebrandt, F., Ardito, T., Mann, A. S., Siegel, N. J., and Kashgarian, M., 1992, Induction and intracellular-localization of hsp-72 after renal ischemia, Am. J. Physiol. 263:F769–F775.

    CAS  Google Scholar 

  • Velezgranell, C. S., Arias, A. E., Torresruiz, J. A., and Bendayan, M., 1994, Molecular chaperones in pancreatic tissue—the presence of cpn10, cpn60 and hsp70 in distinct compartments along the secretory pathway of the acinar cells, J. Cell Sci. 107:539–549.

    CAS  Google Scholar 

  • Volland, C., Urbangrimal, D., Geraud, G., and Haguenauertsapis, R., 1994, Endocytosis and degradation of the yeast uracil permease under adverse conditions, J. Biol. Chem. 269:9833–9841.

    CAS  Google Scholar 

  • Weissmann, C., Bueler, H., Sailer, A., Fischer, M., Aguet, M., and Aguzzi, A., 1993, Role of PrP in prion diseases, Br. Med. Bull. 49:995–1011.

    CAS  Google Scholar 

  • Wing, S. S., Chiang, H. L., Goldberg, A. L., and Dice, J. F., 1991, Proteins containing peptide sequences related to lys-phe-glu-arg-gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats, Biochem. J. 275:165–169.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mayer, R.J., Doherty, F.J. (1996). Selective Proteolysis: 70-kDa Heat-Shock Protein and Ubiquitin-Dependent Mechanisms?. In: Lloyd, J.B., Mason, R.W. (eds) Biology of the Lysosome. Subcellular Biochemistry, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5833-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5833-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7674-3

  • Online ISBN: 978-1-4615-5833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics