Spore-forming, lactic acid producing bacteria of the genera Bacillus and Sporolactobacillus

  • D. Fritze
  • D. Claus
Part of the The Lactic Acid Bacteria book series (LAAB, volume 2)


Lactic acid production is traditionally considered to be associated with non-spore-forming bacteria known as lactic acid bacteria. In addition to these organisms, a number of lactic acid forming aerobic spore-formers have been described which are allocated to the genera Bacillus and Sporolactobacillus. In 1872, Ferdinand Cohn, a German botanist and bacteriologist, established the generic name Bacillus to include rod-shaped bacteria that grow in filaments (Cohn, 1872). Only 4 years later Cohn and Robert Koch independently detected that two species of the newly created genus Bacillus were able to form resting stages which were not killed easily by mere boiling (Cohn, 1876; Koch, 1876). These heat-resistant bodies were denoted as endospores. The detection of these bacterial resting stages resistant to various adverse environmental influences finally finished off the last advocates of the obstinately defended theory of ‘spontaneous generation’. It was also demonstrated that a developmental cycle linked cells and spores: that a cell forms a resistant spore and that this spore grows out again to become a vegetative cell.


Lactic Acid Lactic Acid Bacterium Lactic Acid Production Bacillus Species Bacillus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M.B. (1953) The thermophilic aerobic sporeforming bacteria. Bacteriology Reviews, 17, 125–173.Google Scholar
  2. Amemiya, Y. and Nakayama, O. (1980) Polysaccharide formation by spore-bearing lactic acid bacteria. Journal of General and Applied Microbiology, 26, 159–166.CrossRefGoogle Scholar
  3. Anderson, A.A. and Werkman, C.H. (1940) Description of a dextrolactic acid forming organism of the genus Bacillus. Iowa State College Journal of Science, 14, 187–194.Google Scholar
  4. Ash, C., Farrow, J.A.E., Wallbanks, S. and Collins, M.D. (1991) Phylogenetic heterogeneityGoogle Scholar
  5. of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNAGoogle Scholar
  6. sequences. Letters in Applied Microbiology, 13, 202–206.Google Scholar
  7. Bartholomew, J.W. and Paik, G. (1966) Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores. Journal of Bacteriology, 92, 635–638.Google Scholar
  8. Becker, M.E. and Pederson, C.S. (1950) The physiological characters of Bacillus coagulons (Bacillus thermoacidurans). Journal of Bacteriology, 59, 717–725.Google Scholar
  9. Bennet, J.F. and Canale-Parola, E. (1965) The taxonomic status of Lineola longa. Archiv für Mikrobiologie, 52, 197–205.CrossRefGoogle Scholar
  10. Berry, R.N. (1933) Some new heat resistant acid tolerant organisms causing spoilage in tomato juice. Journal of Bacteriology, 25, 72–73.Google Scholar
  11. Blumenstock, I. (1984) Bacillus coagulans HAMMER 1915 und andere thermophile oder mesophile, säuretolerante Bacillus-Arten-eine taxonomische Untersuchung. PhD thesis,Universität Göttingen, Germany.Google Scholar
  12. Bovallius, A. and Zacharias, B. (1971) Variations in the metal content of some commercial media and their effect on microbial growth. Applied Microbiology, 22, 260–262.Google Scholar
  13. Bradley, D.E. and Franklin, J.G. (1958) Electron microscopy survey of the surface configuration of spores of the genus Bacillus. Journal of Bacteriology, 76, 618–630.Google Scholar
  14. Charney, J.C., Fischer, W.P. and Hegarty, C.P. (1951) Manganese as an essential element for sporulation in the genus Bacillus. Journal of Bacteriology, 62, 145–148.Google Scholar
  15. Claus, D., Fritze, D. and Kocur, M. (1992) Genera related to the genus Bacillus. In The Google Scholar
  16. Prokaryotes, Vol. II, 2nd edn (eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H.) Springer-Verlag, New York, USA, pp. 1769–1791.Google Scholar
  17. Cohn, F. (1872) Untersuchungen über Bakterien. Beiträge zur Biologie der Pflanzen, 1, 127–224.Google Scholar
  18. Cohn, F. (1876) Untersuchungen über Bakterien, IV. Beiträge zur Biologie der Bacillen. Beiträge zur Biologie der Pflanzen, 2, 249–277.Google Scholar
  19. Collins, M.D. and Jones, D. (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiological Reviews, 45, 316–354.Google Scholar
  20. Daron, H.H. (1967) Occurrence of isocitrate lyase in a thermophilic Bacillus species. Journal of Bacteriology, 93, 703–710.Google Scholar
  21. de Bary, A. (1884) Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bakterien. Wilhelm Engelmann, Leipzig, Germany.CrossRefGoogle Scholar
  22. de Boer, J., Teixeira de Mattos, M.J. and Neijssel, O.M. (1990) d(—)-Lactic acid production by suspended and aggregated continuous cultures of Bacillus laevolacticus. Applied Microbiological Biotechnology, 34, 149–153.CrossRefGoogle Scholar
  23. de Vos, W.M. (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiological Reviews, 46, 281–95.Google Scholar
  24. DIN (1982) Nachweis von Hemmstoffen in Milch. DIN 10182 Teil 3. Beuth Verlag, Berlin, Köln, Germany.Google Scholar
  25. Donk, P.J. (1920) A highly resistant thermophilic organism. Journal of Bacteriology, 5, 373–374.Google Scholar
  26. Doores, S. and Westhoff, D.C. (1983) Selective method for the isolation of Sporolactobacillus from food and environmental sources. Journal of Applied Bacteriology, 54, 273–280.CrossRefGoogle Scholar
  27. Dutky, S.R. (1940) Two new spore-forming bacteria causing milky diseases of Japanese beetle larvae. Journal of Agricultural Research, 61, 57–68.Google Scholar
  28. Dutky, S.R. (1947) Preliminary observations on the growth requirements of Bacillus popilliae Dutky and Bacillus lentimorbus Dutky. Journal of Bacteriology, 54, 267.Google Scholar
  29. Epstein, I. and Grossowitz, N. (1969) Prototrophic thermophilic bacillus: isolation, properties, and kinetics of growth. Journal of Bacteriology, 99, 414–417.Google Scholar
  30. Farrow, J.A.E., Wallbanks, S. and Collins, M.D. (1994) Phylogenese interrelationships of round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon, Exiguobacterium, Kurthia, and Planococcus. International Journal of Systematic Bacteriology, 44, 74–82.CrossRefGoogle Scholar
  31. Fox, G.E., Pechmann, K.J. and Woese, C.R. (1977) Comparative cataloguing of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. International Journal of Systematic Bacteriology, 27, 44–57.CrossRefGoogle Scholar
  32. Galesloot, Th.E. and Hassing, F. (1962) Een snelle en gevoelige methode om met papierschijfjes penicilline in melk aan te tonen. Netherlands Milk Dairy Journal, 16, 89–95.Google Scholar
  33. Gary, N.D. and Bard, R.C. (1952) Effect of nutrition on the growth and metabolism of Bacillus subtilis. Journal of Bacteriology, 64, 501–512.Google Scholar
  34. Gibson, T. and Gordon, R.E. (1974) Bacillus. In Bergey’s Manual of Determinative Bacteriology, 8th edn (eds Buchanan, R.E. and Gibbons, N.E.). Williams and Wilkins, Baltimore, MD, USA, pp. 529–550.Google Scholar
  35. Gordon, R.E., Haynes, W.C. and Pang C.H.-N. (1973) The Genus Bacillus. US Department of Agriculture, Washington, DC, USA.Google Scholar
  36. Greene, V.W. (1992) Sterility assurance concepts, methods and problems. In Disinfection, Preservation and Sterilization (eds Russell, A.D., Hugo, W.B. and Ayliffe, G.A.J.). Blackwell Scientific Publications, Oxford, UK, pp. 605–624.Google Scholar
  37. Hammer, B.W. (1915) Bacteriological studies on the coagulation of evaporated milk. Iowa Agricultural Experimental Station Research Bulletin, 19, 119–131.Google Scholar
  38. Hussong, R.V. and Hammer, B.W. (1928) A thermophile coagulating milk under practical conditions. Journal of Bacteriology, 15, 179–188.Google Scholar
  39. Hüppe, F. (1886) Die Formen der Bakterien und ihre Beziehungen zu den Gattungen und Arten, Wiesbaden. Verlag C.W. Kreidel VIII, Germany.Google Scholar
  40. IDF (1970) Detection of Penicillin in Milk by a Disk Assay Technique. (International StandardGoogle Scholar
  41. FIL-IDF 57:1970). International Dairy Federation, Brussels, Belgium.Google Scholar
  42. Kalakoutskii, L.V. and Dobritsa, S.V. (1984) Effect of nutrition on cellular differentiation in prokaryotic microorganisms and fungi. In CRC Handbook of Microbiology, Vol. VI (eds Laskin, A.I. and Lechevalier, H.A.). CRC Press, Boca Raton, Fl, USA, pp. 17–121.Google Scholar
  43. Kandler, O. and Weiss, N. (1986) Genus Sporolactobacillus Kitahara and Suzuki 1963. In Bergey’s Manual of Systematic Bacteriology, Vol. 2 (eds Sneath, P.H.A., Mair, N.S., Sharpe, M.E. and Holt, J.G.). Williams and Wilkins, Baltimore, MD, USA, pp. 1139–1141.Google Scholar
  44. Kitahara, K. and Lai, C.-L. (1967) On the spore formation of Sporolactobacillus inulinus. Journal of General and Applied Microbiology, 13, 197–203.CrossRefGoogle Scholar
  45. Kitahara, K. and Suzuki, J. (1963) Sporolactobacillus nov. subgen. Journal of General and Applied Microbiology, 9, 59–71.CrossRefGoogle Scholar
  46. Klaushofer, H. and Hollaus, F. (1970) Zur Taxonomie der hochthermophilen, in Zuckerfabriksäften vorkommenden aeroben Sporenbildner. Zeitschrift der Zuckerindustrie, 9, 465–470.Google Scholar
  47. Klaushofer, H., Hollaus, F. and Pollack, G. (1971) Microbiology of beet sugar manufacture. Process Biochemistry, 6,(6), 39–41.Google Scholar
  48. Koch, R. (1876) Die Aetiologie der Milzbrandkrankheit, Beiträge zur Biologie der Pflanzen, 2, 277–310.Google Scholar
  49. Kok, J., Van der Vossen, J.M.B.M. and Venema, G. (1984). Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli.Google Scholar
  50. Applied and Environmental Microbiology, 48, 726–731.Google Scholar
  51. Kristjansson, J.K. (1989) Thermophilic organisms as source of thermostable enzymes. Trends in Biotechnology, 7, 349–353.CrossRefGoogle Scholar
  52. Lacks, S.A., Lopez, P., Greenberg, B. and Espinosa, M. (1986) Identification and analysis of genes for tetracycline resistance and replication region. Journal of Bacteriology, 157, 445–453.Google Scholar
  53. Logan, N.A. and Berkeley, R.C.M. (1984) Identification of Bacillus strains using the API system. Journal of General and Microbiology, 130, 1871–1882.Google Scholar
  54. McKray, G.A. and Vaughn, R.H. (1957) The fermentation of glucose by Bacillus stearothermophilus. Food Research, 22, 494–500.CrossRefGoogle Scholar
  55. Nakamura, L.K., Blumenstock, I. and Claus, D. (1988) Taxonomic study of Bacillus coagulans Hammer 1915 with a proposal for Bacillus smithii sp. nov. International Journal of Systematic Bacteriology, 38, 63–73.CrossRefGoogle Scholar
  56. Nakayama, O. and Yanoshi, M. (1967a). Spore-bearing lactic acid bacteria isolated from rhizosphere. I. Taxonomic studies on Bacillus laevolacticus nov. sp. and Bacillus racemilacticus nov. sp. Journal of General and Applied Microbiology, 13, 139–153.CrossRefGoogle Scholar
  57. Nakayama, O. and Yanoshi, M. (1967b) Spore-bearing lactic acid bacteria isolated from rhizosphere. II. Taxonomic studies on the catalase negative strains. Journal of General and Applied Microbiology, 13, 155–165.CrossRefGoogle Scholar
  58. Niimura, Y., Koh, E., Yanagida, F., Suzuki, K.-L, Komagata, K. and Kozaki, M. (1990)Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-Google Scholar
  59. digesting bacterium which lacks cytochrome, quinone, and catalase. International Journal of Systematic Bacteriology, 40, 297–301.Google Scholar
  60. Norris, J.R., Berkeley, R.C.W., Logan, N.A. and O’Donnell, A.G. (1981) The genera Bacillus and Sporolactobacillus. In The Prokaryotes (eds Starr, M.P., Stolp, H., Trüper,Google Scholar
  61. H.G., Balows, A. and Schlegel, H.G.). Springer-Verlag, Berlin, Germany, pp. 1711–1742.Google Scholar
  62. Olsen, E. (1944) En sporedannende maelkesyrebakterie Lactobacillus cereale (nov. sp.). Kemisk Maandesblad, den Nordisk Handelsblad Kemisk Industri, 25, 125–130.Google Scholar
  63. Ostovar, K. and Keeney, P.G. (1973) Isolation and characterization of microorganisms involved in the fermentation of cocoa beans. Journal of Food Science, 38, 611–617.CrossRefGoogle Scholar
  64. Pepper, R.E. and Costilow, R.N. (1964) Glucose catabolism by Bacillus popilliae and Bacillus lentimorbus. Journal of Bacteriology, 87, 303–310.Google Scholar
  65. Pianka, S. (1993) Taxonomische Untersuchung an zwei neuen Bacillus-Arten: Bacillus aminovorans und Bacillus laevolacticus, PhD thesis, Technische Universität Braunschweig, Brannschweig, GermanyGoogle Scholar
  66. Priest, F.G. (1989) Products and applications. In Bacillus (ed. Harwood, C.R.). PlenumPress, New York, USA, pp. 293–320.Google Scholar
  67. Priest, F.G. (1993) Systematics and ecology of Bacillus. In Bacillus subtilis and other Gram-Positive Bacteria (eds Sonenshein, A.L., Hoch, J. A. and Losick, R.). American Society for Microbiology, Washington, DC, USA, pp. 3–16.Google Scholar
  68. Priest, F.G., Goodfellow, M. and Todd, C. (1988) A numerical classification of the genus Bacillus. Journal of General Microbiology, 134, 1847–1882.Google Scholar
  69. Rabinovich, P.M., Haykinson, M.Y., Arutyunova, L.S., Yomantas, Y.V. and Stepanov, A.I. (1985) The structure and source of plasmid DNA determine the cloning properties of vectors for Bacillus subtilis. Basic Life Sciences, 30, 635–56.Google Scholar
  70. Rainey, F.A. and Stackebrandt, E. (1993) Phylogenese analysis for the relationship of Saccharococcus thermophilus toBacillus stearothermophilus. Systematic Applied Microbiology, 16, 224–226.CrossRefGoogle Scholar
  71. Rainey, F.A., Fritze, D. and Stackebrandt, E. (1994) The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiology Letters, 115, 205–212.CrossRefGoogle Scholar
  72. Renco, P. (1942) Richerce su un fermento lattico sporingo (Bacillus thermoacidificans). Annals of Microbiology, 2, 109–114.Google Scholar
  73. Rössler, D., Ludwig, W., Schleifer, K.H., Lin, C., McGill, T.J., Wisotzkey, J.D., Jurtshuk Jr, P. and Fox, G.E. (1991) Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. Systematic Applied Microbiology, 14, 266–269.CrossRefGoogle Scholar
  74. Russell, A.D. (1982) The Destruction of Bacterial Spores. Academic Press, London, UK.Google Scholar
  75. Sarles, W.B. and Hammer, B.W. (1932) Observations on Bacillus coagulans. Journal of Bacteriology, 23, 301–314.Google Scholar
  76. Seki, T., Chung, C.-K., Mikami, H. and Oshima, V. (1978) Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. International Journal of Systematic Bacteriology, 28, 182–189.CrossRefGoogle Scholar
  77. Sharma, V.K. (1992) Sporolactobacilli. In The Lactic Acid Bacteria, Vol. 1 (ed. Wood, B.J.B.). Elsevier Applied Science, London, UK, pp. 431–446.CrossRefGoogle Scholar
  78. Sharp, R.J., Brown, K.J. and Atkinson, A. (1980) Phenotypic and genotypic characterization of some thermophilic species of Bacillus. Journal of General Microbiology, 117, 201–210.Google Scholar
  79. Sharp, R.J., Riley, P.W. and White, D. (1992) Heterotrophic thermophilic bacilli. In Thermophilic Bacteria (ed. Kristjansson, J.K.). CRC Press, Boca Raton, FL, USA, pp. 19–50.Google Scholar
  80. Smith, N.R., Gordon, R.E. and Clark, F.E. (1952) Aerobic Sporeforming Bacteria (Agriculture monograph no. 16). US Department of Agriculture, Washington, DC, USA.Google Scholar
  81. Stackebrandt, E. and Woese, C.R. (1981) The evolution of prokaryotes. Symposium of the Society of General Microbiology, 32, 1–32.Google Scholar
  82. Stackebrandt, E., Ludwig, W., Weizenegger, M., Dorn, S., McGill, T.J., Fox, G.E., Woese, C.R., Schubert, W. and Schleifer, K.-H. (1987) Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. Journal of General Microbiology, 133, 2523–2529.Google Scholar
  83. Stahly, D.P., Andrews, R.E. and Yousten, A.A. (1992) The genus Bacillus-insect pathogens. In The Prokaryotes, Vol. II, 2nd edn (eds Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H.). Springer-Verlag, New York, USA, pp. 1697–1745.Google Scholar
  84. Stark, J.B., Goodban, A.E. and Owens, H.J. (1953) Beet sugar liquors. Determination and concentration of lactic acid in processing liquor. Journal of Agricultural and Food Chemistry, 1, 564–566.CrossRefGoogle Scholar
  85. Steinkraus, K.H. (1957) Study on the milky disease organism. II. Saprophytic growth of Bacillus popilliae. Journal of Bacteriology, 74, 625–632.Google Scholar
  86. Suzuki, T. and Yamasato, K. (1994) Phytogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. FEMS Microbiology Letters, 115, 13–18.CrossRefGoogle Scholar
  87. Trinkunaite, L.L., Duda, V.I., Mityushina, L.M., Lebedinskii, A.V. and Krivenko, V.V. (1987) A new spore-forming bacterium Bacillus vesiculiferous sp. nov. Microbiologiya, 56, 108–113.Google Scholar
  88. Van der Vossen, J.M.B.M., Kok, J. and Venema, G. (1985) Construction of cloning, promoter-screening, and terminator-screening shuttle vectors for Bacillus subtilis and Streptococcus. Applied and Environmental Microbiology, 50, 540–542.Google Scholar
  89. Vosman, B. and Venema, G. (1983) Introduction of a Streptococcus cremoris plasmid in Bacillus subtilis. Journal of Bacteriology, 156, 920–921.Google Scholar
  90. White, D., Sharp, R.J. and Priest, F.G. (1994) A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie van Leeuwenhoek, 64, 357–386.CrossRefGoogle Scholar
  91. Wiegel, J. (1981) Distinction between the Gram reaction and the Gram type of bacteria. International Journal of Systematic Bacteriology, 31, 88.CrossRefGoogle Scholar
  92. Wisotzkey, J.D., Jurtshuk Jr, P., Fox, G.E., Deinhard, G. and Poralla, K. (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. International Journal of Systematic Bacteriology, 42, 263–269.CrossRefGoogle Scholar
  93. Woese, C. (1987) Bacterial evolution. Microbiology Reviews, 51, 221–271.Google Scholar
  94. Wolf, J. and Barker, A.N. (1968) The genus Bacillus: aids to the identification of its species. In Identification Methods for Microbiologists, part B (eds Gibbs, B.M. and Skinner, F.A.). Academic Press, New York, USA, pp. 93–109.Google Scholar
  95. Yanagida, F., Suzuki, K.-I., Kaneko, T., Kozaki, M. and Komagata, K. (1987a) Morphological, biochemical, and physiological characteristics of sporeforming lactic acid bacteria. Journal of General and Applied Microbiology, 33, 33–45.CrossRefGoogle Scholar
  96. Yanagida, F., Suzuki, K.-I., Kaneko, T., Kozaki, M. and Komagata, K. (1987b) Deoxyribonucleic acid relatedness among some spore-forming lactic acid bacteria. Journal of General and Applied Microbiology, 33, 47–55.CrossRefGoogle Scholar
  97. Zukowski, M.M. (1992) Production of commercially valuable products. InBiology of Bacilli: Applications to Industry (eds Doi, R.H. and McGloughlin, M.). Butterworth-Heinemann, Boston, MS, USA, pp. 311–337.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • D. Fritze
  • D. Claus

There are no affiliations available

Personalised recommendations