Advertisement

Applications of porous materials

Chapter
Part of the Materials Technology Series book series (MTEC, volume 4)

Abstract

There are many techniques for separation as shown in Figure 1.3. Filtration, by passing a liquid or gas through a porous material to make it pure, is a common separation method. Filtration is used for many applications requiring a particular particle size or pore size. Porous filters have been used in many ways from dairy applications to high-tech processing. Many kinds of materials have been used as porous filters. Paper and cloth are very widely used porous materials. In this book we focus on metals, ceramics and glasses. The comparison of porous materials with respect to some specific properties is listed in Table 1.3. High penetrating porosity, high fluid permeability, narrow pore size distribution, and high mechanical strength are required for porous material filters. Filters for use at high temperatures, such as for exhaust gas filtration in automobiles require high thermal resistance, e.g. high temperature oxidation and corrosion resistance and creep resistance. High chemical stability is also required for filtration in chemical applications.

Keywords

Fuel Cell Porous Material Solid Oxide Fuel Cell High Specific Surface Area Aluminum Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shiraki, Y. (1983) History of Technology of Ceramics (in Japanese), Gihodo, Tokyo, p. 206.Google Scholar
  2. 2.
    Roll, K. H. (1984) History of Powder Metallurgy, Metals Handbook, 9th edn, Vol. 7: Powder Metallurgy, (Coordinated by E. Klar), American Society for Metals, OH, p. 17.Google Scholar
  3. 3.
    Dowson, G. (1990) Powder Metallurgy-The Process and its Products, Adam Hilger, Bristol, pp. 99–100.Google Scholar
  4. 4.
    Kato, Y. (1988) Ceramics Japan, 23, 726–734.Google Scholar
  5. 5.
    Woyansky, J. S., Scott, C. E. and Minnear, W. P. (1992) Am. Ceram. Soc. Bull., 71, 1674–1682.Google Scholar
  6. 6.
    Deevi, S. C. and Sikka, V.K. (1996). Intermetallics, 4, 357–375.CrossRefGoogle Scholar
  7. 7.
    Sakka, S. (1989) Ceramics Japan, 24, 601–607.Google Scholar
  8. 8.
    Horitsu, H. (1993) Ceramic Transaction Vol. 31: Porous Materials, (eds K. Ishizaki, L. Sheppard, S. Okada, M. Hamasaki and B. Huybrechts), The American Ceramic Society, OH, pp. 381–389.Google Scholar
  9. 9.
    Abe, H., Seki, H., Fukunaga, A. and Egashira, M. (1993) Ceramic Transaction Vol. 31: Porous Materials, (eds K. Ishizaki, L. Sheppard, S. Okada, M. Hamasaki and B. Huybrechts), The American Ceramic Society, OH, pp. 371–380.Google Scholar
  10. 10.
    Kawase, M. (1990) New Glass, 5, 209–216.Google Scholar
  11. 11.
    Mishima, K. (1995) Functional Materials, 15, 48–51.Google Scholar
  12. 12.
    Kendall, K. (1991) Am. Ceram. Soc. Bull., 70, 1159–1160.Google Scholar
  13. 13.
    Pigeaud, A., Maru, H. C., Paetsch, L., Doyon, J. and Bernard, R. (1984) Porous Electrodes: Theory and Practice, Proc. Electrochem. Soc., Vol. 84-8, The Electrochemical Society, NJ, pp. 234–259.Google Scholar
  14. 14.
    Minh, N. Q. (1988) J. Power Sources, 24, 1–19.CrossRefGoogle Scholar
  15. 15.
    Nakagawa, Ohzu, H., Akasaka, Y. and Tomimatsu, N. (1996) Denki Kagaku, 64, 478–481.Google Scholar
  16. 16.
    Sasaki, K. and Gauckler, L. J. (1996) Denki Kagaku, 64, 654–658.Google Scholar
  17. 17.
    Kuroshima, Y., Kondo, Y. and Okada, S. (1985) J. Ceram. Soc. Jpn., 82, 347–350 (1985).Google Scholar
  18. 18.
    Onishi, H., Kondo, Y., Yamamoto, S., Tsukuda, A. and Ishizaki, K. (1996) J. Ceram. Soc. Jpn., 104, 610–613.CrossRefGoogle Scholar
  19. 19.
    Ishizaki, K., Yamamoto, S., Takata, A. and Kondo, Y. Patent Pending (Jpn: (1994) H6-59738 and H6-59740, USA: (1997) 5 637 123 and Eur. No. (1995) 95102067).Google Scholar
  20. 20.
    Hagiuda, Y., Karikomi, K. and Nakagawa, T. (1987) J. Soc. Precise Engineering Jpn., 53, 1562–1568.CrossRefGoogle Scholar
  21. 21.
    Nakayama, S. and Kuroshima, H. (1992) J. Ceram. Soc. Jpn., 100, 758–762.CrossRefGoogle Scholar
  22. 22.
    Kawasaki, H. (1962) Bull., of Ceramic. Soc. Jpn., 70, C567–C571.Google Scholar
  23. 23.
    Nitta, T., Terada, Z. and Hayakawa, S. (1980) J. Am. Ceram. Soc., 63, 295–300.CrossRefGoogle Scholar
  24. 24.
    Shimizu, Y., Ichinose, H., Arai, H. and Seiyama, T. J. Chem. Soc. Jpn., 1985, 1270–1277.Google Scholar
  25. 25.
    Takami, A. (1988) Am. Ceram. Soc. Bull., 67, 1956–1960.Google Scholar
  26. 26.
    Göpel, W. and Schierbaum, K. D. (1995) Sensors and Actuators, B26, 1–12.Google Scholar
  27. 27.
    Fain, D. E. (1994) MRS Bull., 19, 40–43.Google Scholar
  28. 28.
    Terpstra, R. A., Bonekamp, B. C. and Verings, H. J. (1988) Desalination, 70, 395–404.CrossRefGoogle Scholar
  29. 29.
    Sawai, Y. and Ishizaki, K. (1993) Ceramic Transaction Vol. 31: Porous Materials, (eds K. Ishizaki, L. Sheppard, S. Okada, M. Hamasaki and B. Huybrechts), The American Ceramic Society, OH, pp. 335–341.Google Scholar
  30. 30.
    Hayashi, S., Kijima, T., Ishizaki, K. and Sawai, Y. (1993) Jpn. Patent Pending, H5-59738.Google Scholar
  31. 31.
    Takata, Y. and Muto, G. (1973) Anal. Chem., 45, 1864–1868.CrossRefGoogle Scholar
  32. 32.
    Okumoto, Y., Ishizaki, K. and Yamada, A. (1993) Ceramic Transaction Vol. 31: Porous Materials, (eds K. Ishizaki, L. Sheppard, S. Okada, M. Hamasaki and B. Huybrechts), The American Ceramic Society, OH, pp. 315–324.Google Scholar
  33. 33.
    Dowson, G. (1990) Powder Metallurgy-The Process and its Products, Adam Hilger, Bristol, pp. 95–98.Google Scholar
  34. 34.
    Kass, S. (1958) Semicond. Prod., May/Jun, 39–40.Google Scholar
  35. 35.
    Mclean, D. C. and Power, F. S. (1956) Proc. IRE, 44, 872–878.CrossRefGoogle Scholar
  36. 36.
    Liu, K. C. and Anderson, M. A. (1996) J. Electrochem. Soc., 143, 124–130.CrossRefGoogle Scholar
  37. 37.
    Sanada, K. and Hosokawa, M. (1979) NEC Res. Dev., 55, 21–28.Google Scholar
  38. 38.
    Conway, B. E. (1991) J. Electrochem. Soc., 138, 1539–1548.CrossRefGoogle Scholar
  39. 39.
    Bullard, G. L., Sierra-Alcazar, H. B., Lee, H. L. and Morris, J. L. (1989) IEEE Trans. Mag., 25, 102–106.CrossRefGoogle Scholar
  40. 40.
    Sarangapani, S., Forchione, J., Griffith, A. and Laconti, A. B. (1990) J. Power Sources, 29, 355–364.CrossRefGoogle Scholar
  41. 41.
    Davies, D. J. and Zhen, S. (1983) J. Mater. Sci., 18, 1899–1911.CrossRefGoogle Scholar
  42. 42.
    Thornton, P. H. and Magee, C. L. (1975) Metall. Trans., 6A, 1253-1263.Google Scholar
  43. 43.
    Gardner, A. R. (1967) Prod. Eng., 38, 140–143.Google Scholar
  44. 44.
    Weimer, G. A. (1976) Iron Age, 218, 33–34.Google Scholar
  45. 45.
    Yanagisawa, A., Noguchi, H. and Nakagawa, T. (1987) J. Soc. Precise Engineering Jpn., 53, 91–97.CrossRefGoogle Scholar
  46. 46.
    Hench, L. L. and Ethridge, E. C. (1982) Biomaterials-An Interfacial Approach, Academic Press, NY, p. 130.Google Scholar
  47. 47.
    ibid., p. 70.Google Scholar
  48. 48.
    ibid., p. 72.Google Scholar
  49. 49.
    Park, J. B. (1984) Biomaterials Science and Engineering, Plenum Press, NY, pp. 391–394.CrossRefGoogle Scholar
  50. 50.
    Dowson, G. (1990) Powder Metallurgy-The Process and its Products, Adam Hilger, Bristol, p. 102.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Nagaoka University of TechnologyJapan
  2. 2.The Pennsylvania State UniversityUSA
  3. 3.Tokyo Institute of TechnologyJapan

Personalised recommendations