Advertisement

Ligament, tendon and fascia

  • S. L-Y. Woo
  • R. E. Levine

Abstract

Ligament, tendon, and fascia are soft tissues composed primarily of collagen fibers. In ligaments and tendons these fibers are organized into roughly parallel bundles to transmit tensile forces between two bones (ligament) or between muscle and bone (tendon). In tendons the bundles are nearly all oriented along the long axis, whereas in ligaments, typically shorter than tendons, the bundles are also generally organized except for bends and twists at insertion sites to bone, e.g. the anterior cruciate ligament in the knee [1]. Fascia, on the other hand, is a sheet of fibrous tissue which encloses muscle. In the leg, fascia lata encompasses the entire thigh musculature and becomes thicker as it progresses distally [2].

Keywords

Ultimate Tensile Strength Cruciate Ligament Patellar Tendon Surface Strain Knee Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woo, S.L-Y., An, K-N., Arnoczky, S.P., et al. (1994) Anatomy, Biology, and Biomechanics of Tendon, Ligament, and Meniscus, in Orthopaedic Basic Science, (eds S.R. Simon), American Academy of Orthopaedic Surgeons, pp. 45–87.Google Scholar
  2. 2.
    Fox, J.M. (1986) Injuries to the thigh, in The Lower Extremity and Spine in Sports Medicine, (eds J.A. Nicholas and E.B. Hershman), The C. V. Mosby Company, St Louis, pp. 1087–1117.Google Scholar
  3. 3.
    Yamada, H. (1970) Mechanical properties of ligament, tendon, and fascia, in Strength of Biological Materials, (eds F.G. Evans), The Williams & Wilkins Co., Baltimore, pp. 92–105.Google Scholar
  4. 4.
    Woo, S.L., Hollis, J.M., Adams, D.J., et al. (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. American Journal of Sports Medicine, 19(3), 217–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Chazal, J., Tanguy, A., Bourges, M., et al. (1985) Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of Biomechanics, 18(3), 167–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Prietto, M.P., Bain, J.R., Stonebrook, S.N., et al. (1988) Tensile strength of the human posterior cruciate ligament (PCL). Transactions of the Orthopaedic Research Society, 13, 195.Google Scholar
  7. 7.
    Siegler, S., Block, J. and Schneck, CD. (1988) The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot & Ankle, 8(5), 234–42.CrossRefGoogle Scholar
  8. 8.
    Bechtold, J.E., Eastlund, D.T., Butts, M.K., et al. (1994) The effects of freeze-drying and ethylene oxide sterilization on the mechanical properties of human patellar tendon. American Journal of Sports Medicine, 22(4), 562–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Blevins, F.T., Hecker, A.T., Bigler, G.T., et al. (1994) The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. American Journal of Sports Medicine, 22(5), 328–33.PubMedGoogle Scholar
  10. 10.
    Boardman, N.D., Pfaeffle, H.J., Grewal, R., et al. (1995) Tensile properties of the interosseous membrane of the human forearm. Transactions of the Orthopaedic Research Society, 20, 629.Google Scholar
  11. 11.
    Butler, D.L., Grood, E.S., Noyes, F.R., et al. (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. Journal of Biomechanics, 17(8), 579–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Butler, D.L., Guan, Y., Kay, M.D., et al. (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. Journal of Biomechanics, 25(5), 511–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Butler, D.L., Kay, M.D. and Stouffer, D.C. (1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. Journal of Biomechanics, 19(6), 425–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Chun, K.J., Butler, D.L., Bukovec, D.B., et al. (1989) Spatial variation in material properties in fascicle-bone units from human patellar tendon. Transactions of the Orthopaedic Research Society, 14, 214.Google Scholar
  15. 15.
    Haut, R.C. and Powlison, A.C. (1990) The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. Journal of Orthopaedic Research, 8(4), 532–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Itoi, E., Grabowski J., Morrey, B.F., et al. (1993) Capsular properties of the shoulder. Tohoku J. Exp. Med., 171, 203–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson, G.A., Tramaglini, D.M., Levine, R.E., et al. (1994) Tensile and viscoelastic properties of human patellar tendon. Journal of Orthopaedic Research, 12(6), 796–803.PubMedCrossRefGoogle Scholar
  18. 18.
    Neumann, P., Keller, T.S., Ekstrom, L., et al. (1992) Mechanical properties of the human lumbar anterior longitudinal ligament. Journal of Biomechanics, 25(10), 1185–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Pintar, F.A., Yoganandan, N., Myers, T., et al. (1992) Biomechanical properties of human lumbar spine ligaments. Journal of Biomechanics, 25(11), 1351–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Race, A. and Amis, A.A. (1994) The mechanical properties of the two bundles of the human posterior cruciate ligament. Journal of Biomechanics, 27(1), 13–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Regan, W.D., Korinek, S.L., Morrey, B.F., et al. (1991) Biomechanical study of ligaments around the elbow joint. Clinical Orthopaedics & Related Research, 271, 170–9.Google Scholar
  22. 22.
    Salvelberg, H.H.C.M., Kooloos, J.G.M., Huiskes, R., et al. (1992) Stiffness of the ligaments of the human wrist joint. Journal of Biomechanics, 25(4), 369–376.CrossRefGoogle Scholar
  23. 23.
    Schuind, F., An, K.N., Berglund, L., et al. (1991) The distal radioulnar ligaments: a biomechanical study. Journal of Hand Surgery — American Volume, 16(6), 1106–14.CrossRefGoogle Scholar
  24. 24.
    Sheh, M., Butler, D.L and Stouffer, D.C. (1986) Mechanical and structural properties of the human cruciate ligaments and patellar tendon. Transactions of the Orthopaedic Research Society, 11, 236.Google Scholar
  25. 25.
    Noyes, F.R. and Grood, E.S. (1976) The strength of the anterior cruciate ligament in humans and rhesus monkeys. Journal of Bone and Joint Surgery, 58-A(8), 1074–1082.Google Scholar
  26. 26.
    France, E.P., Paulos, L.E., Rosenberg, T.D., et al. (1988) The biomechanics of anterior cruciate allografts, in Prosthetic Ligament Reconstruction of the Knee (eds M.J. Friedman and R.D. Ferkel), W.B. Saunders Company, Philadelphia, pp. 180–5.Google Scholar
  27. 27.
    Paulos, L.E., France, E.P., Rosenberg, T.D., et al. (1987) Comparative material properties of allograft tissues for ligament replacement: effects of type, age, sterilization and preservation. Transactions of the Orthopaedic Research Society, 12, 129.Google Scholar
  28. 28.
    Hurschler, C. Vanderby, R. Jr., Martinez, D.A., et al. (1994) Mechanical and biochemical analyses of tibial compartment fascia in chronic compartment syndrome. Annals of Biomedical Engineering, 22(3), 272–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Butler, D.L., Noyes, F.R., Walz, K.A., et al. (1987) Biomechanics of human knee ligament allograft treatment. Transactions of the Orthopaedic Research Society, 12, 128.Google Scholar
  30. 30.
    Bigliani, L.U., Pollock, R.G., Soslowsky, L.J., et al. (1992) Tensile properties of the inferior glenohumeral ligament. Journal of Orthopaedic Research, 10(2), 187–97.CrossRefGoogle Scholar
  31. 31.
    Hubbard, R.P. and Soutas-Little, R.W. (1984) Mechanical properties of human tendon and their age dependence. Journal of Biomechanical Engineering, 106(2), 144–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Noyes, F.R., Butler, D.L., Grood, E.S., et al. (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. Journal of Bone & Joint Surgery, 66-A(3), 344–52.Google Scholar
  33. 33.
    Woo, S.L-Y., Danto, M.I., Ohland, K.J., et al. (1990) The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: A comparative study with two existing methods. Journal of Biomechanical Engineering, 112, 426–431.PubMedCrossRefGoogle Scholar
  34. 34.
    Lyon, R.M., Lin, H.C., Kwan, M.K-W., et al. (1988) Stress relaxation of the anterior cruciate ligament (ACL) and the patellar tendon (PT). Transactions of the Orthopaedic Research Society, 13, 81.Google Scholar
  35. 35.
    Schwerdt, H., Constantinesco, A. and Chambron, J. (1980) Dynamic viscoelastic behavior of the human tendon in vitro. Journal of Biomechanics, 13, 913–922.PubMedCrossRefGoogle Scholar
  36. 36.
    Arms, S.W. and Butler, D.L. (1989) Cruciate ligament fiber bundle recruitment: A mathematical model. Transactions of the Orthopaedic Research Society, 14, 190.Google Scholar
  37. 37.
    Chun, K.J., Butler, D.L., Stouffer D.C., et al. (1988) Stress-strain relationships in fascicle-bone units from human patellar tendon and knee ligaments. Transactions of the Orthopaedic Research Society, 13, 82.Google Scholar
  38. 38.
    Woo, S.L-Y., Johnson, G.A., and Smith, B.A. (1993) Mathematical modeling of ligaments and tendons. Journal of Biomechanical Engineering, 115,468–473.PubMedCrossRefGoogle Scholar
  39. 39.
    Butler, D.L., Sheh, M.Y., Stouffer, D.C., et al. (1990) Surface strain variation in human patellar tendon and knee cruciate ligaments. Journal of Biomechanical Engineering, 112, 38–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • S. L-Y. Woo
  • R. E. Levine

There are no affiliations available

Personalised recommendations