Skip to main content

Fiber optic laser anemometry

  • Chapter
  • 820 Accesses

Part of the book series: Optoelectronics, Imaging and Sensing ((OISS,volume 2))

Abstract

Laser anemometry (LA) is a technique that measures flow velocity distributions and higher moments such as turbulence levels, from light scattered by particles entrained in the flow [1–3]. LA was first demonstrated shortly after the invention of the laser, and quickly established itself as the instrument of choice for nonintrusive flow measurement. Early LA systems were generally large, bulky and difficult to use in inaccessible environments. The introduction of optical fibers led to the development of optical systems remotely linked to the laser source and detectors. Optical fibers are now used in a number of commercial laser anemometers, and other optical instrumentation. More recently solid state lasers and detectors have been combined with optical fiber technology to implement compact, robust multi-velocity component measurement instruments. This chapter reviews the principles of laser transit anemometry (LTA) and laser Doppler velocimetry (LDV), the optical fiber characteristics required to implement practical systems and optical signal-processing techniques employed. This is followed by a discussion of fiber optic implementations of LTA and LDV configurations, multiplexing techniques for multi-velocity component measurement and examples of applications in which they have been used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tropea, C. (1995) Laser anemometry: recent developments and techniques. Meas. Sei. Tech. 16, 605–19.

    Article  Google Scholar 

  2. Cummins, H. Z. and Pike, E. R. (eds) (1977) Photon Correlation Spectroscopy and Velocimetry, NATO Advanced Studies Institute Series B23, Plenum.

    Google Scholar 

  3. Durst, F., Melling, A. and Whitelaw, J. H. (1976) Principles and Practice of Laser Anemometry, Academic Press.

    Google Scholar 

  4. Yeh, Y. and Cummings, H. Z. (1964) Localised fluid flow measurements with an He-Ne Spectrometer. Appl. Phys. Lett. 4, 176–8.

    Article  Google Scholar 

  5. Penny, C. M. (1969) Differential Doppler velocity measurements. IEEEJ. Quantum Electron. QE-5, 318.

    Google Scholar 

  6. Vom Stein H. D. and Pfeifer, H. J. (1969) A Doppler difference method for velocity measurements. Metrologia 5, 59–61.

    Article  Google Scholar 

  7. Jackson, D. A. and Paul, D. M. (1970) Measurement of hypersonic velocities and turbulence by direct spectral analysis of Doppler shifted laser light. Phys. Lett. 32A, 77–8.

    Google Scholar 

  8. Roehle, I. and Schodl, R. (1994) Evaluation of the accuracy of the Doppler global technique, Optical Methods and Data Processing in Heat and Fluid Flow, I Mech E, London.

    Google Scholar 

  9. Huffacker, R. M. (1970) Doppler detection system for gas velocity measurements. Appl. Opt, 9 1026–8.

    Article  Google Scholar 

  10. Drain, L. E. (1980) The Laser Doppler Technique, Wiley, Chichester.

    Google Scholar 

  11. Mazumder, M. K. (1970) Laser Doppler velocity measurement without directional ambiguity by using frequency shifted incident beam. Appl. Phys. Lett. 16, 462–4.

    Article  Google Scholar 

  12. Tanner, L. H. (1972) A particle timing laser velocity meter, Aeronautical Engineering Department, The Queens University of Belfast (Report).

    Google Scholar 

  13. Schodl, R. (1976) Extension of the range of applicability of LDA by means of the laser-dual-focus (L2F)-technique. The Accuracy of Flow Measurements by Laser Doppler Methods, 480–9.

    Google Scholar 

  14. James, S. W., Lockey, R. A., Egan, D., Tatam, R. P. and Elder, R. L. (1996) 3D Fiber optic laser Doppler Velocimetry. Proc. SPIE 2839, 323–34.

    Article  Google Scholar 

  15. Van de Hulst, H. C. (1981) Light Scattering by Small Particles, Dover, New York.

    Google Scholar 

  16. Poyntz-Wright, L. J., Fermann, M. E. and Russell, P. St. J. (1988) Non-linear transmission and colour centre dynamics in gemanosilicate fibre at 420-540 nm. Opt. Lett. 13, 1023–5.

    Article  Google Scholar 

  17. Duffy, C. J. (1994) Stimulated Brillouin scattering in monomode optical fibers for sensing and signal processing applications. Ph.D. thesis, Cranfield University, Bedford, UK.

    Google Scholar 

  18. Smith, R. G. (1972) Optical power handling capacity of low loss optical fibres as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 2489–94.

    Google Scholar 

  19. Tang, C. L. (1966) Saturation and spectral characteristics of the Stokes emission in the stimulated process. J. Appl. Phys. 37, 2945–55.

    Article  Google Scholar 

  20. Ippen, E. P. and Stolen, R. H. (1972) Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 21, 539–40.

    Article  Google Scholar 

  21. Duffy, C. J. and Tatam, R. P. (1993) An optical frequency shifter based on stimulated Brillouin scattering in birefringent optical fiber. Appl. Optics. 32, 5966–72.

    Article  Google Scholar 

  22. Labudde, P., Anliker, P. and Weber, H. P. (1980) Transmission of narrow band high power laser radiation through optical fibre. Optics Comm., 32, 385–90.

    Article  Google Scholar 

  23. Yariv, A. and Yeh, P. (1984) Optical Waves in Crystals, John Wiley, Chichester.

    Google Scholar 

  24. Tatam, R. P. (1995) Optical fiber modulation techniques for single mode fiber sensors in Optical Fiber Sensor Technology (eds. K. T. V. Grattan and B. T. Meggitt), Springer Science+Business Media Dordrecht, London, 223–67.

    Chapter  Google Scholar 

  25. Risk, W. P., Youngquist, R. C., Kino, G. S. and Shaw, H. J. (1984) Acousto-optic frequency shifter for single-mode fibres. Opt. Lett., 9, 309–11.

    Article  Google Scholar 

  26. Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) A fibre optic frequency shifter utilising travelling flexure waves in birefringent fibres. J. Inst. Electron. Radio. Engrs. S8, S92–8.

    Article  Google Scholar 

  27. Kim, B. Y., Blake, J. N., Engan, H. E. and Shaw, H. J. (1986) All-fiber acousto-optic frequency shifter. Optics Lett. 11, 389–91.

    Article  Google Scholar 

  28. Birks, T. A., Farrell, S. G., Russell, P. St J. and Pannell, C. N. (1994) Fibre acousto-optic frequency shifter based on a null coupler. Optics Lett. 19, 1964–66.

    Article  Google Scholar 

  29. Sabert, H., Dong, L. and Russell, P. St J. (1992) Versatile acousto-optic flexural wave-modulator, filter and frequency shifter in dual-core fiber. Int. J. Opto Electron 7, 189–94.

    Google Scholar 

  30. Fibre Pro, Donam Systems Inc., Korea.

    Google Scholar 

  31. Birks, T. A., Farrell, S. G., Russell, P. St J. and Pannell, C. N. (1994) Fibre acousto-optic frequency shifter based on a null coupler. Opt. Lett. 19, 1964–66.

    Article  Google Scholar 

  32. Cotter, D. (1983) Stimulated Brillouin scattering in monomode optical fibre. J. Opt. Commun. 4, 10–19.

    Google Scholar 

  33. Cotter, D. (1982) Observation of stimulated Brillouin scattering in low loss silica fibre at 1.3 urn. Electron. Letts. 18, 445–96.

    Article  Google Scholar 

  34. Bayvel, P. and Giles, I. P. (1989) Linewidth narrowing in pumped all-fibre Brillouin ring laser. Electron. Lett. 25, 260–2.

    Article  Google Scholar 

  35. Khan, O. S. and Tatam, R. P. (1993) Fiber optic frequency shifter based on stimulated Brillouin scattering in a birefringent fiber ring resonator. Optics Commun. 103, 161–8.

    Article  Google Scholar 

  36. Culverhouse, D. O., Farahi, F., Pannell, C. N. and Jackson, D. A. (1989) Stimulated Brillouin scattering: a means to realise a tunable microwave generator or distributed temperature sensor. Electron. Letts. 25, 915–16.

    Article  Google Scholar 

  37. Kalli, K., Culverhouse, D. O. and Jackson, D. A. (1991) Fiber frequency shifter based on generation of stimulated Brillouin scattering in high-finesse ring resonators. Optics Lett. 16, 1538–40.

    Article  Google Scholar 

  38. Khan, O. S. and Tatam, R. P. (1993) Fiber optic frequency shifter based on stimulated Brillouin scattering in a birefringent fiber ring resonator. Optics Commun. 103, 161–8.

    Article  Google Scholar 

  39. Tobben, H., Muller, H. and Dopheide, D. (1994) Brillouin frequency shift LDA. Proc. of 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 14.2.1.

    Google Scholar 

  40. Freitags, I. and Welling, H. (1994) Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd: YAG lasers. Appl. Phys. B 58, 537–43.

    Article  Google Scholar 

  41. For example: Millennia™ laser from Spectra Physics Lasers, Mountain View, California, USA, or the Verdi™ laser from Coherent Inc., Santa Carla, California, USA.

    Google Scholar 

  42. Martini, G. (1987) Analysis of a single-mode optical fibre piezoceramic phase modulator. Opt. Quant. Electron. 19, 179–90.

    Article  Google Scholar 

  43. Jones, J. D. C, Chan, R. K. Y. and Jackson, D. A. (1984) Designs of fibre optic systems for Doppler difference velocimetry. Proc. of 2nd International Symposium on the Application of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal, 6.6.

    Google Scholar 

  44. Dandridge, A. and Goldberg, L. (1982) Current induced frequency modulation in diode lasers Electron. Letts. 18, 302–3.

    Google Scholar 

  45. Ford, H. D., Atcha, H. and Tatam, R. P. (1993) Optical fibre technique for measurement of small frequency separations: applications to surface profile measurement using electronic speckle pattern interferometry. Meas. Sci. Technol. 14, 601–7.

    Article  Google Scholar 

  46. Jones, J. D. C, Jackson, D. A., Corke, M. and Kersey, A. D. (1984) Optics and Lasers in Engineering 5, 127–39.

    Article  Google Scholar 

  47. Jones, J. D. C, Corke, M., Kersey, A. D. and Jackson, D. A. (1982) Miniature solid-state laser Doppler velocimeter. Electron. Letts. 18, 967–8.

    Article  Google Scholar 

  48. Kato, S., Ichikaura, T. and Ito, H. (1996) Multipoint sensing laser Doppler velocimetry based on laser diode frequency modulation. I lth optical fibre sensors conference, OFS-11, Sapporo, Japan, 606–9.

    Google Scholar 

  49. Tobben, H., Miiller, H. and Dopheide, D. (1996) Power and sensitivity of LDA systems by fibre amplifiers. Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 34.1.1-34.1.4.

    Google Scholar 

  50. Pannell, C. N., Midgley, J. H., Jones, J. D. C. and Jackson, D. A. (1988) Fibre-optic transit velocimetry using laser diode sources. Electron. Letts. 24, 525–6.

    Article  Google Scholar 

  51. Schodl, R. and Foster, W. (1988) A multi colour fiber optic laser two focus velocimeter for 3-dimensional flow analysis. AIAA-88–3034.

    Google Scholar 

  52. Tanaka, T. and Benedek, G. B. (1975) Measurements of the velocity of blood flow (in-vivo) using a fibre optic catheter and optical spectroscopy. Appl. Opt. 14, 189–96.

    Google Scholar 

  53. Dyot, R. B. (1978) Fibre optic Doppler anemometer. Microwaves, Optics and Acoustics 2, 13–18.

    Article  Google Scholar 

  54. Meggitt, B. T., Boyle, W. J. O., Grattan, K. T. V., Palmer, A. W. and Ning, Y. N. (1990) Fibre optic anemometry using an optical delay cavity technique. Proc. SPIE 1314, 321–9.

    Google Scholar 

  55. Kyuma, K., Tai, S., Hamanaka, K. and Nunoshita, M. (1981) Laser Doppler velocimeter with a novel optical fibre probe. Appl. Opt. 20, 2424–7.

    Article  Google Scholar 

  56. Nishihara, H., Matsumoto, K. and Koyama, J. (1984) Use of a laser diode and an optical fibre for a compact laser Doppler velocimeter. Opt. Lett. 9, 62–4.

    Article  Google Scholar 

  57. Nishihara, H., Koyama, J., Hoki, N., Kajiya, F., Muramoto, T. and Hironaga, K. (1984) Optical fibre laser Doppler velocimeter for pulsatile blood flows. Laser Anemometry in Fluid Mechanics, R. J. Adrain, D. F. G. Durao, F. Durst, H. Mishina and J. H. Whitelaw (eds), 335-45, Loadan, Lisbon.

    Google Scholar 

  58. James, S. W., Lockey, R. A., Egan, D. and Tatam, R. P. (1995) Fibre optic based reference beam laser Doppler velocimeter. Opt. Comm. 119, 460–4.

    Google Scholar 

  59. Egan, D. A., James, S. W. and Tatam, R. P. (1997) A polarisation based optical fibre vibrometer. Meas. Sci. Technol. 8, 343–7.

    Article  Google Scholar 

  60. Toda, H., Haruna, M. and Nishihara, H. (1987) Optical integrated circuit for a fiber laser Doppler velocimeter. J. Lightwave Technol. LT-5, 901–5.

    Article  Google Scholar 

  61. Pannell, C. N., Jones, J. D. C. and Jackson, D. A. (1994) The effect of environmental acoustic noise on optical-fibre based velocity and vibration sensors. Meas. Sci. Technol. 5, 412–17.

    Article  Google Scholar 

  62. Sasaki, O., Sato, T., Abe, T., Miuguchi, T. and Niwayama, M. (1980) Follow up — type laser Doppler velocimeter using single-mode optical fibres. Appl. Opt. 19, 1306–8.

    Article  Google Scholar 

  63. Knuhtsen, J., Olldag, E. and Buchave, P. (1982) Fibre optic laser Doppler anemometer with Bragg frequency shift utilising polarisation based single mode fibre. J. Phys. E 15, 1888–91.

    Article  Google Scholar 

  64. Jackson, D. A., Jones, J. D. C. and Chan, R. K. Y. (1984) A high power fibre optic laser Doppler velocimeter. J. Phys. E: Sci. Instrum. 17, 977–80.

    Article  Google Scholar 

  65. Chan, R. K. Y., Jones, J. D. C. and Jackson, D. A. (1985) A compact all optical fibre Doppler difference laser velocimeter. Opt. Acta 32, 241–6.

    Article  Google Scholar 

  66. Jones, J. D. C, Chan, R. K. Y. and Jackson, D. A. (1986) Design of fibre optic systems for Doppler difference laser velocimetry. Laser Anemometry in Fluid Mechanics II, R. J. Adrain, D. F. G. Durao, F. Durst, H. Mishina and J. H. Whitelaw (eds), 69–83, Loadan, Lisbon.

    Google Scholar 

  67. Nakatani, N., Maegwa, A., Izumi, T., Yamada, T. and Sakabe, T. (1986) Advancing multi-point optical fiber LDV’s — vorticity measurement and some new optical systems. Laser Anemometry in Fluid Mechanics II, R. J. Adrain, D. F. G. Durao, F. Durst, H. Mishina and J. H. Whitelaw (eds), 3–18, Loadan, Lisbon.

    Google Scholar 

  68. Meyers, J. F. (1988) The elusive third component. Finite Elements in Analysis and Design 4, 51.

    Article  Google Scholar 

  69. Dancey, C. L. (1987) A review of three component laser Doppler anemometry. Journal of Optical Sensors, 2, 437–69.

    Google Scholar 

  70. Yanta, W. J. (1979) A three dimensional laser Doppler velocimeter for use in wind tunnels. ICASF Record 294.

    Google Scholar 

  71. Stauter, R. C. (1993) Measurement of the three dimensional tip region flow in an axial compressor. Journal of Turbomachinery 115, 496.

    Google Scholar 

  72. Dopheide, D., Strunk, V. and Krey, E. A. (1993) Three component laser Doppler anemometer for gas flow rate measurements up to 5,500m3/h. Metrologia 30, 435–69.

    Google Scholar 

  73. Dopheide, D., Strunk, V. and Pfeifer, H. J. (1990) Miniaturized multicomponent laser Doppler anemometers using high-frequency pulsed diode lasers and new electronic signal acquisition systems. Exp. Fluids 9, 309–16.

    Article  Google Scholar 

  74. Carbonaro, M. (1984) Conception and design of a new type of three components laser Doppler velocimeter. Von Karaman Institute Technical Memorandum

    Google Scholar 

  75. Dopheide, D., Rinker, M. and Strunk, V. (1993) High frequency pulsed laser diode application in multi-component laser Doppler anemometry, Optics and Lasers in Engineering, 18, 135–43.

    Article  Google Scholar 

  76. Nakatani, N., Tokita, M. and Yamada, T. (1984) LDV using polarisation preserving optical fibres for simultaneous measurement of two velocity components. Appl. Opt. 23, 1686–7.

    Article  Google Scholar 

  77. Nakatani, N., Tokita, M., Izumi, T. and Yamada, Y. (1985) Doppler velocimetry using polarisation-preserving optical fibres for simultaneous multidimensional velocity components. Rev. Sci. Instrum. 56, 2025–29.

    Article  Google Scholar 

  78. Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) Two-dimensional fibre-optic laser velocimetry using polarisation state control. J. Phys. E: Sci Instrum. 21, 103–7.

    Article  Google Scholar 

  79. Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1986) Optical polarisation state control schemes using fibre optics or Bragg cells. J. Phys. E: Sci. Instrum. 19, 711–17.

    Article  Google Scholar 

  80. Czarske, J. W. and Müller, H. (1996) Two component directional laser Doppler anemometer based on a frequency modulated Nd: YAG ring laser and fibre delay lines. Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 34.2.1–34.2.6.

    Google Scholar 

  81. Miiller, H., Wang, H. and Dopheide, D. (1996) Fibre optical multicomponent LDA system using the optical frequency difference of powerful DBR laser diodes. Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 34.3.1–34.3.4.

    Google Scholar 

  82. Carbonaro, M. (1984) Conception and design of a new type of three component laser Doppler velocimeter. Von Karman Institute Technical Memorandum.

    Google Scholar 

  83. Dopheide, D. et al. (1993) High frequency pulsed laser diode application in multi-component laser Doppler anemometry. Optics and Lasers in Engineering, 18, 135–43.

    Google Scholar 

  84. Lockey, R. A. and Tatam, R. P. (1997) Multi-component time-division multiplexed optical fibre Doppler anemometry. IEE Proc. Optoelectronics 144, 168–75.

    Article  Google Scholar 

  85. Yoo, J. S. et al. (1991) On the surface recombination velocity and output intensity limit of pulsed semiconductor lasers. IEEE Photonics Technology Letters 7, 594.

    Google Scholar 

  86. Orloff, K. L. and Snyder, P. K. (1982) Laser Doppler anemometer measurements using non-orthogonal velocity components: error estimates. Appl. Opt. 21, 39.

    Google Scholar 

  87. Morrison, G. L., Johnson, M. C, Swan, D. H. and Deotte, R. E. (1991) Advantages of orthogonal and non-orthogonal three dimensional anemometer systems. Flow Meas. Instrum. 2, 89.

    Google Scholar 

  88. Snyder, P. K., OrlofT, K. L. and Reinath, M. S. (1984) Reduction of flow measurement uncertainties in laser velocimeters with non-orthogonal channels. AIAA Journal, 8, 1115.

    Google Scholar 

  89. James, S. W., Lockey, R. A., Egan, D., Tatam, R. P. and Elder, R. L. (1996) 3d fibre optic laser Doppler velocimetry. Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 28.2.1–28.2.6.

    Google Scholar 

  90. James, S. W., Tatam, R. P. and Elder, R. L. (1997) Design considerations for a 3d fibre optic laser Doppler velocimeter for turbomachinery applications. Rev. Sci. Instrum. 68, 3241–6.

    Article  Google Scholar 

  91. Jones, J. D. C, Anderson, D. J. and Greated, C. A. (1997) Fibre optic beam delivery systems for particle image velocimetry. Opt. Laser Eng. 27, 657–74.

    Article  Google Scholar 

  92. Meyers, J. F. and Komine, H. (1991) Doppler global velocimetry: a new way to look at velocity. ASME 4th International Conference on Laser Anemometry, Advances and Applications, 289–96.

    Google Scholar 

  93. Ford, H. D. and Tatam, R. P. (1997) Development of extended field Doppler velocimetry for turbomachinery applications. Opt. Laser Eng. 27, 675–96.

    Article  Google Scholar 

  94. For example, Dantec Measurement Technology, Denmark, TSI Inc., USA and Polytech GmbH, Germany.

    Google Scholar 

  95. Sharp Laboratories, Press Service June 1994.

    Google Scholar 

  96. Imam, H., Rose, B., Lindrold B. et al. (1996) Miniaturising and ruggedising laser anemometers. Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 40.2.1–40.2.7.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

James, S.W., Tatam, R.P. (1998). Fiber optic laser anemometry. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5787-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5787-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7651-4

  • Online ISBN: 978-1-4615-5787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics