Advances in Brachytherapy

  • Ravinder Nath
  • Lynn D. Wilson
Part of the Cancer Treatment and Research book series (CTAR, volume 93)


Soon after the discovery of radioactivity in 1896, small encapsulated sources of radioactive materials were implanted in tumors to treat malignancies. Clinical use of radioactive sources at short distances from or inside a tumor volume is termed brachytherapy, as opposed to teletherapy, which employs a source of radiation external to the patient at a large distance (about 1 m) from the tumor. Brachytherapy continues to play an important role in the management of cancers of several sites, including the uterine cervix, endometrium, and prostate. Compared with conventional external beam therapy, the physical advantages of brachytherapy result from a superior localization of dose to the tumor volume. In brachytherapy, as radiation is continuously delivered over a period of time, repair of sublethal and potentially lethal damage, proliferation, and other cell kinetic effects modify the radiation response of tumor and normal tissues, resulting in complex dose-rate effects that also influence the therapeutic ratio for brachytherapy.


Dose Rate Dose Distribution Uterine Cervix Uveal Melanoma High Dose Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nath R. 1995. Physical properties and clinical uses of brachytherapy radionuclides. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 7–37.Google Scholar
  2. 2.
    Henschke UK. 1960. Afterloading applicator for radiation therapy of carcinoma of the uterus. Radiology 74:834.PubMedGoogle Scholar
  3. 3.
    Henschke UK, Hilaris BS, Mahan GD. 1964. Remote afterloading with intracavitary applicators. Radiology 83:344–345.PubMedGoogle Scholar
  4. 4.
    Walstam R. 1960. Remotely controlled afterloading radiotherapy apparatus (a preliminary report). Phys Med Biol 7:225–228.Google Scholar
  5. 5.
    Walstam R. 1965. Studies on therapeutic short-distance and intracavitary gamma beam techniques. Acta Radiol Suppl 236:1–129.Google Scholar
  6. 6.
    O’Connell D, Joslin CAF, Howard N, Ramsey NW, Liversage WE. 1965. A remotely-controlled unit for the treatment of uterine carcinoma. Lancet 2:570.PubMedGoogle Scholar
  7. 7.
    Wakabayashi M, Ohsawa T, Mitsuhashi H, Kikuchi Y, Mita M, Watanabe T, Saito K, Suda Y, Yushii M, Kato S, Koshibu R, Furuse M, Wakabayashi M. 1971. High dose rate intracavity using the RALSTRON. Introduction and Part I (Treatment of carcinoma of the uterine cervix). Nippon Acta Radiol 31:340–378.PubMedGoogle Scholar
  8. 8.
    Mundinger F, Sauerwein K. 1966. Gamma med ein Gerät zur Bestrahlung von Hirngeschwülsten mit Radioisotopen. Acta Radiol 5:48–52.Google Scholar
  9. 9.
    Busch M, Makosi B, Schulz, Sauerwein K. 1977. Das Essener Nachlade-Verfahren fur die intrakavitare Strahlentherapie. Strahlentherapie 153:581–588.PubMedGoogle Scholar
  10. 10.
    Glasgow GP. 1995. Principles of remote afterloading devices. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 485–502.Google Scholar
  11. 11.
    van der Laarse R, Edmunson GK, Luthmann RW, Prins TPE. 1991. Optimization of HDR brachytherapy dose distributions. Activity — The Selectron Users’ Newsletter 5:94–101.Google Scholar
  12. 12.
    van der Laarse R, de Boer RW. 1990. Computerized high dose rate brachytherapy treatment planning. In Martinez AA, Orton CG, Mould RF, eds. Brachytherapy HDR and LDR. Columbia, MD: Nucletron Corporation, pp. 169–183.Google Scholar
  13. 13.
    Renner WD, O’Conner TP, Bermudez NM. 1990. An algorithm for generation of implant plans for high-dose-rate irradiators. Med Phys 17:35–40.PubMedGoogle Scholar
  14. 14.
    Edmunson GK. 1989. Dose specification in intraluminal implants. Activity — The Selectron Users’ Newsletter 2:16–17.Google Scholar
  15. 15.
    van der Laarse R. 1994. In Mould Rx, Battermann JJ, Martinez AA, Speiser BL, eds. Brachytherapy from Radium to Optimization. Veenendaal, the Netherlands: Nucletron Corporation.Google Scholar
  16. 16.
    Holmes T, Mackie TR, Simpkin D, Reckwerdt P. 1991. A unified approach to the optimization of brachytherapy and external beam dosimetry. Int J Radiat Oncol Biol Phys 20:859–873.PubMedGoogle Scholar
  17. 17.
    Sloboda RS. 1992. Optimization of brachytherapy dose distributions by simulated annealing. Med Phys 19:955–964.PubMedGoogle Scholar
  18. 18.
    Ezzell GA, Luthmann RW. 1995. Clinical implantation of dwell time optimization techniques for single stepping-source remote afterloaders. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 617–640.Google Scholar
  19. 19.
    Nath R, Gray L. 1987. Dosimetry studies on prototype Am sources for brachytherapy. Int J Radiat Oncol Biol Phys 13:897–905.PubMedGoogle Scholar
  20. 20.
    Nath R, Peschel RE, Park CH, Fischer JJ. 1988. Development of an Am applicator for intracavitary irradiation of gynecologic cancers. Int J Radiat Oncol Biol Phys 14:969–978.PubMedGoogle Scholar
  21. 21.
    Nath R, Park CH, King CR, Muench P. 1990. A dose computation model for 241Am vaginal applicators including the source-to-source shielding effects. Med Phys 17:833–842.PubMedGoogle Scholar
  22. 22.
    Muench PJ, Nath R. 1992. Dose distributions produced by shielded applicators sing u241Am for intracavitary irradiation of tumors in the vagina. Med Phys 19:1299–1306.PubMedGoogle Scholar
  23. 23.
    Sakelliou L, Sakellariou K, Sarigiannis K, Angelopoulos A, Perris A, Zarris G. 1992. Dose rate distributions around 60Co, 137Cs, l98Au, 192Ir, 241Am, 125I (models 6702 and 6711) brachytherapy sources and the nuclide 99Tcm. Phys Med Biol 37:1859–1872.PubMedGoogle Scholar
  24. 24.
    Waterman FM, Holcomb DE. 1994. Dose distributions produced by a shielded vaginal cylinder using a high-activity iridium-192 source. Med Phys 21:101–106.PubMedGoogle Scholar
  25. 25.
    Peschel RE, Dowling S, Nath R, et al. 1988. An intracavitary vaginal applicator using americium-241. Endocuriether/Hyperthermia Oncol 4:91–96.Google Scholar
  26. 26.
    Samuels M, Peschel RE, Papadopoulos D, et al. 1991. A feasibility study of intracavitary americium-241 for recurrent pelvic malignancies. Endocuriether/Hyperthermia Oncol 7:131–137.Google Scholar
  27. 27.
    Chung JY, Roberts K, Peschel RE, Nath R, Pourang R, Kacinski B, Wilson LD. 1997. Treatment of recurrent pelvic and selected primary gyncecologic malignancies with 241Am. Radiat Oncol Invest, submitted.Google Scholar
  28. 28.
    Holm HH, Juul N, Perdersen JF, Hansen H, Stroyer I. 1983. Transperineal 1-125 seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urol 130:283–286.PubMedGoogle Scholar
  29. 29.
    Blasko JC, Grimm PD, Radge H. 1993. Brachytherapy and organ preservation in the management of carcinoma of the prostate. Semin Radiat Oncol 3:240–249.PubMedGoogle Scholar
  30. 30.
    Martel MK. 1995. Three-dimensional imaging techniques in brachytherapy. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 265–280.Google Scholar
  31. 31.
    Klevenhagen SC. 1973. An experimental study of the dose distribution in water around 137Cs tubes used in brachytherapy. Br J Radiol 46: 1073–1082.PubMedGoogle Scholar
  32. 32.
    Krishnaswamy V. 1972. Dose distributions about 137Cs sources in tissue. Radiology 105: 181–184.PubMedGoogle Scholar
  33. 33.
    Saylor WL, Dillard M. 1976. Dosimetry of 137Cs sources with the Fletcher-Suit gynecological applicator. Med Phys 3:117–119.PubMedGoogle Scholar
  34. 34.
    Thomason C, Mackie TR, Lindstrom MJ, Higgins PD. 1991. The dose distribution surrounding 192Ir and 137Cs seed sources. Phys Med Biol 36:475–493.PubMedGoogle Scholar
  35. 35.
    Thomason C, Mackie TR, Lindstron MJ. 1991. Effect of source encapsulation on the energy spectra of 192Ir and 137Cs seed sources. Phys Med Biol 36:495–505.PubMedGoogle Scholar
  36. 36.
    Williamson JF. 1988. Monte Carlo and analytic calculation of absorbed dose near 137Cs intra-cavitary sources. Int J Radiat Oncol Biol Phys 15:227–237.PubMedGoogle Scholar
  37. 37.
    Cerra F, Rodgers JE. 1990. Dose distribution anisotropy of the GammaMed IIi brachytherapy sources. Endocuriether/Hyperthermia Oncol 6:71–80.Google Scholar
  38. 38.
    Muench PJ, Meigooni AS, Nath R. 1991. Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide film and LiF TLDs used for brachytherapy dosimetry. Med Phys 18:769–775.PubMedGoogle Scholar
  39. 39.
    Ling CC, Schell MC, Yorke ED, et al. 1985. Two-dimensional dose distribution of 125I seeds. Med Phys 12:652–655.PubMedGoogle Scholar
  40. 40.
    Ling CC, Yorke ED, Spiro IJ, et al. 1983. Physical dosimetry of 125I seeds of a new design for interstitial implant. Int J Radiat Oncol Biol Phys 9:1747–1752.PubMedGoogle Scholar
  41. 41.
    Rustgi SN. 1992. Photon spectral characteristics of a new double-walled iodine-125 source. Med Phys 19:927–931.PubMedGoogle Scholar
  42. 42.
    Ling CC, Anderson LL, Shipley WU. 1979. Dose inhomogeneity in interstitial implants using 125I seeds. Int J Radiat Oncol Biol Phys 5:419–425.PubMedGoogle Scholar
  43. 43.
    Nath R. 1993. New directions in radionuclide sources for brachytherapy. Semin Radiat Oncol 3:278–289.PubMedGoogle Scholar
  44. 44.
    Nath R, Meigooni AS, Muench P, Melillo A. 1993. Anisotropy functions for 103Pd, 125I, and 192Ir interstitial brachytherapy sources. Med Phys 20:1465–1473.PubMedGoogle Scholar
  45. 45.
    Nath R, Melillo A. 1993. Dosimetric characteristics of a double wall 125I source for interstitial brachytherapy. Med Phys 20:1475–1483.PubMedGoogle Scholar
  46. 46.
    Interstitial Collaborative Working Group: Anderson LL, Nath R, Weaver KA, et al. eds. 1990. Interstitial Brachytherapy: Physical, Biological and Clinical Considerations. New York: Raven Press.Google Scholar
  47. 47.
    Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. 1995. Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM radiation therapy committee task group no. 43. Med Phys 22:209–234.PubMedGoogle Scholar
  48. 48.
    Nath R, Bongiorni P, Rockwell S. 1990. The RBEs of 123I and 241Am photons relative to 226Ra photons for continuous low dose rate irradiations at dose rates of 0.17 to 0.73Gy/hr. Endocuriether/Hyperthermia Oncol 6:81–91.Google Scholar
  49. 49.
    Zellmer DL, Gillin MT, Wilson JF. 1992. Microdosimetric single event spectra of ytterbium-169 compared with commonly used brachytherapy sources and teletherapy beams. Int J Radiat Oncol Biol Phys 23:627–632.PubMedGoogle Scholar
  50. 50.
    Hall EJ. 1985. The biological basis of endocurietherapy. Endocuriether/Hyperthermia Oncol 1:141–151.Google Scholar
  51. 51.
    King CR, Nath R, Rockwell S. 1988. Effects of continuous low dose rate irradiation: Computer simulations. Cell Tissue Kinet 21:339–351.PubMedGoogle Scholar
  52. 52.
    Ling CC. 1992. Permanent implants using 198Au, 103Pd and 125I: Radiobiological considerations based on the linear-quadratic model. Int J Radiat Oncol Biol Phys 23:81–87.PubMedGoogle Scholar
  53. 53.
    Nath R, Meigooni AS, Melillo A. 1992. Some treatment planning considerations for 103Pd and 125I permanent interstitial implants. Int J Radiat Oncol Biol Phys 22:1131–1138.PubMedGoogle Scholar
  54. 54.
    Kelly H. 1916. Radium therapy and cancer of the uterus. Trans Am Gynecol Soc 41:532.Google Scholar
  55. 55.
    Bailey H, Quimby E. 1922. The use of radium in cancer of the female generative organs. Am J Obstet Gynecol 3:117–133.Google Scholar
  56. 56.
    Kucera H, Weghaupt K. 1986. Treatment of inoperable endometrial carcinnoma with intracavity high dose rate iridium irradiation. Strahlenther Onkol 9:508–514.Google Scholar
  57. 57.
    Taina E. 1981. High versus low dose rate intracavitary radiotherapy in the treatment of carcinoma of the uterus. Acta Obstet Gynecol Scand 103 (Suppl), 1–71.Google Scholar
  58. 58.
    Rotte K. 1989. Brachytherapy HDR and LDR. Holland, Nucletron p. 68.Google Scholar
  59. 59.
    Bjornsson M, Sorbe B. 1982. Intracavitary irradiation of endometrial carcinomas of the uterus in stage I using a “bulb technique”. Br J Radiol 55, 56–59.PubMedGoogle Scholar
  60. 60.
    Snelling MD, Hanbert HE. 1979. The treatment of carcinoma of the cervix and endometrium using the Cathetron at the Middlesex Hospital. Clin Radiol 30:253–258.PubMedGoogle Scholar
  61. 61.
    Sorbe B, Frankendal B. 1989. Intracavitary irradiation of endometrial carcinoma stage I by a high dose rate afterloading technique. Gynecol Oncol 33:135–145.PubMedGoogle Scholar
  62. 62.
    Joslin CAF. 1980. High Dose Rate Afterloading in the Treatment of Cancer of the Uterus. London: British Institute of Radiology, p. 24.Google Scholar
  63. 63.
    Lybeert MLM, van Putten WLJ, Ribot JG, et al. 1989. Endometrial carcinoma: High dose rate brachytherapy in combination with external irradiation — a multivariate analysis of relapses. Radiother Oncol 16:245–252.PubMedGoogle Scholar
  64. 64.
    Mandell L, Nori D. 1985 Postoperative vaginal radiation in endometrial cancer using a remote afterloading technique. Int J Radiat Oncol Biol Phys 11:473–478.PubMedGoogle Scholar
  65. 65.
    Peschel RE, Healey G, Smith RJ. 1989. High dose rate remote aftrerloading for endometrial cancer. Endocuriether/Hyperthermia Oncol 5:209–214.Google Scholar
  66. 66.
    Riipa P, Seppo K, Kauppila MD. 1985. Comparison of Heyman packing and Cathetron after loading methods in the treatment of endometrial cancer. Br J Radiol 58:437–441.Google Scholar
  67. 67.
    Sorbe BG, Smeds AC. 1990. Postoperative vaginal irradiation with high dose rate afterloading technique in endometrial carcinoma stage I. Int J Radiat Oncol Biol Phys 18:305–314.PubMedGoogle Scholar
  68. 68.
    Turner B, Knisely J, Kacinski B, Roberts K, Peschel R, Gumbs A, Rutherford T, Edracki B, Schwartz P, Chambers S, Chambers J, Kohorn E, Wilson LD. 1996. Post-operative high dose rate vaginal apex brachytherapy in stage I endometrial adenocarcinoma. Accepted as a poster presentation at The First Joint Meeting of the GEC-ESTRO and the American Brachytherapy Society, Tours, France, May 13-15.Google Scholar
  69. 69.
    Turner BC, Gumbs A, Peschel RE, Haffty B, Kacinski B, Wilson L. 1996. Curative high dose rate vaginal apex brachytherapy in stage I papillary serous carcinoma of the endometrium. Accepted as an Oral Presentation at The First Joint Meeting of the GEC-ESTRO and American Brachytherapy Society, Tours, France. May 13-15.Google Scholar
  70. 70.
    Nori D, Merimsky O, Batata M, Caputo T. 1994. Postoperative high dose-rate intravaginal brachytherapy combined with external irradiation for early stage endometrial cancer: A long-term follow-up. Int J Radiat Oncol Biol Phys 30:831–837.PubMedGoogle Scholar
  71. 71.
    Noyes WR, Bastin K, Edwards SA, Buchler DA, Stitt JA, Thomadsen BR, Fowler JF, Kinsella T. 1995. Postopeative vaginal cuff irradiation using high dose rate remote afterloading: A phase II clinical protocol. Int J Radiat Oncol Biol Phys 32:1439–1443.PubMedGoogle Scholar
  72. 72.
    Eifel PJ. 1992. High dose rate brachytherapy for carcinoma of the cervix: High tech or high rise? Int J Radiat Oncol Biol Phys 24:383–386.PubMedGoogle Scholar
  73. 73.
    Orton DG. 1991. HDR vs LDR for ca cervix: High risk or biased reporting? Int J Radiat Oncol Biol Phys 24:387–388.Google Scholar
  74. 74.
    Orton CG, Seyedsadr M, Somnay A. 1991. Comparison of high and low dose rate remote afterloloading for cervix cancer and the importance of fractionation. Int J Radiat Oncol Biol Phys 21:1425–1434.PubMedGoogle Scholar
  75. 75.
    Arai A, Nakano T, Morita S. 1992. High-dose-rate remote afterloading intracavitary radiation therapy for cancer of the uterine cervix — a 20-year experience. Cancer 69:175–180.PubMedGoogle Scholar
  76. 76.
    Chen M, Lin F, Hong C, et al. 1991. High dose rate afterloading technique in the radiation treatment of uterine cervical cancer: 339 cases and 9 years experience in Taiwan. Int J Radiat Oncol Biol Phys 20:915–919.PubMedGoogle Scholar
  77. 77.
    Koga K, Wantanabe K, Kawano M, et al. 1987. Radiotherapy for carcinoma of the uterine cervix by remotely controlled afterloading intracavitary system with high dose rate. Int J Radiat Oncol Biol Phys 13:615–618.PubMedGoogle Scholar
  78. 78.
    Himmelman A, Holmberg E, Oden A, et al. 1985. Intracavitary irradiation of carcinoma of the cervix stage IB and ILA: A clinical comparison between a remote high dose rate after-loading system and a low dose rate manual system. Acta Radiol Oncol 24:139–144.Google Scholar
  79. 79.
    Teshima T, Chatani M, Hata K, et al. 1987. High dose rate intracavitary therapy for carcinoma of the uterine cervix: I. General figures of survival and complication. Int J Radiat Oncol Biol Phys 13:1035–1041.PubMedGoogle Scholar
  80. 80.
    Streeter OE, Goldson AL, Chevalier C, et al. 1987. High dose rate Co-60 remote after-loading irradiation in cancer of the cervix in Haiti, 1977-1984. Int J Radiat Oncol Biol Phys 13:1035–1042.Google Scholar
  81. 81.
    Roman TN, Souhami L, Freeman CR, et al. 1991. High dose rate afterloading intracavitary therapy in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 20:921–926.PubMedGoogle Scholar
  82. 82.
    Joslin CAF. 1989. High activity source afterloading in gynecologic cancer and its future prospects. Ultrich Henschke Memorial Lecture. Endocuriether/Hyperthermia Oncol 5:69–81.Google Scholar
  83. 83.
    Utley JF, von Essen CF, Horn RA, et al. 1984. High dose rate afterloading brachytherapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 10:2259–2263.PubMedGoogle Scholar
  84. 84.
    Shigematsu Y, Nishiyama K, Masake N, et al. 1983. Treatment of carcinoma of the uterine cervix by remotely controlled afterloading intracavity radiotherapy with high dose rate: A comparative study with a low dose rate system. Int J Radiat Oncol Biol Phys 9:351–356.PubMedGoogle Scholar
  85. 85.
    Selke P, Roman TN, Souhami L, Freeman CR, Clark BG, Evans MDC, Pla C, Podgorsak EB. 1993. Treatment results of high dose rate brachytherapy in patients with carcinoma of the cervix. Int J Radiat Oncol Biol Phys 27:803–809.PubMedGoogle Scholar
  86. 86.
    Fu KK, Phillips TL. 1990. High-dose-rate intracavitary brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 19:791–796.PubMedGoogle Scholar
  87. 87.
    Hammer J, Zoidal JP, Altendorfer C, Seewald DH, Track C, Stummvoll W, Labeck W. 1993. Combined external and high-dose-rate intracavitary radiotherapy in the primary treatment of cancer of the uterine cervix. Radiother Oncol 27:66–68.PubMedGoogle Scholar
  88. 88.
    Newman H, James K, Smith C. 1983. Treatment of cancer of the cervix with a high-dose-rate afterloading machine (the Cathetron). Int J Radiat Oncol Biol Phys 9:931–937.PubMedGoogle Scholar
  89. 89.
    Le Pechoux C, Akine Y, Sumi M, Tokuuye K, Ikeda H, Yajima M, Yamada T, Tanemura K, Tsunematsu R, Ohmi K, Sonoda T. 1995. High dose rate brachytherapy for carcinoma of the uterine cervix: Comparison of two different fractionation regimens. Int J Radiat Oncol Biol Phys 31:735–741.PubMedGoogle Scholar
  90. 90.
    Pechoux CL, Akine Y, Sumi M, Tokuuye K, Ikeda H, Yajima M, Yamada T, Tanemura K, Tsunematsu R, Ohmi K, Sonoda T. 1995. High dose rate brachytherapy for carcinoma of the uterine cervix: Comparison of two different fractionation regimens. Int J Radiat Oncol Biol Phys 31:735–741.PubMedGoogle Scholar
  91. 91.
    Sarkaria JN, Petereit DG, Stitt JA, Hartman TJ, Chappell R, Thomadsen BP, Buchler DA, Fowler JF, Kinsella TJ. 1994. A comparison of the efficacy and complication rates of low dose-rate versus high dose-rate brachytherapy in the treatment of uterine cervical carcinoma. Int J Radiat Oncol Biol Phys 30:75–82.PubMedGoogle Scholar
  92. 92.
    Pater FD, Sharma SC, Negi PS, Ghoshal S, Gupta BD. 1994. Low dose rate versus high dose rate brachytherapy in the treatment of carcinoma of the uterine cervix: A clinical trial. Int J Radiat Oncol Biol Phys 28:335–341.Google Scholar
  93. 93.
    Orton CG. 1995. Width of the therapeutic window: What is the optimal dose-per-fraction for high dose rate cervix cancer brachytherapy?. Int J Radiat Oncol Biol Phys 31: 1011–1013.PubMedGoogle Scholar
  94. 94.
    Pasteau O. 1911. Traitment du cancer de la prostate par le radium. Rev Malad Nutr:363–367.Google Scholar
  95. 95.
    Whitmore WF Jr, Hilaris B, Grabstald H. 1972. Retropublic implantation of iodine 125 in the treatment of prostate cancer. J Urol 108:918–920.PubMedGoogle Scholar
  96. 96.
    Porter AT, Blasko JC, Grimm PD, Reddy SM, Ragde H. 1995. Brachytherapy for prostate cancer. CA Cancer J Clin 45:165–178.PubMedGoogle Scholar
  97. 97.
    Peschel RE, Fogel TD, Kacinski BM, Kelly K, Mate TP. 1985. Iodine-125 implants for carcinoma of the prostate. Int J Radiat Oncol Biol Phys 11:1777–1781.PubMedGoogle Scholar
  98. 98.
    Morton JD, Peschel RE. 1988. A detailed analysis of the chronic complications from iodine-125 implant vs. external beam irradiation for prostate cancer. Endocuriether/Hyperthermia Oncol 4:113–118.Google Scholar
  99. 99.
    Fuks A, Leibel SA, Wallner KE, et al. 1991. The effect of local control on metastatic dissemination in carcinoma of the prostate: Long-term results in patients treated with 1-125 implantation. Int J Radiat Oncol Biol Phys 21:537–547.PubMedGoogle Scholar
  100. 100.
    Hilaris BS, Fuks Z, Nori D, et al. 1991. Interstitial irradiation in prostate cancer: Report of ten-year results. In Rolf S, ed. Interventional Radiation Therapy: Techniques, Brachy-therapy. New York: Springer-Verlag, pp. 235–240.Google Scholar
  101. 101.
    Lytton B, Collins JT, Weiss RM, et al. 1979. Results of biopsy after early stage prostatic cancer prostatic cancer treatment by implantation of 1-125 seeds. J Urol 121:306–309.PubMedGoogle Scholar
  102. 102.
    Blasko JC, Grimm PD, Ragde H. 1993. Brachytherapy and organ preservation in the management of carcinoma of the prostate. Semin Radiat Oncol 3:240–249.PubMedGoogle Scholar
  103. 103.
    Butler WM, Merrick GS. 1996. 1-125 strand™ loading technique. Radiat Oncol Invest 4:48–49.Google Scholar
  104. 104.
    Wallner KW, Roy J, Zelefsky M, Fuks Z, Harrison L. 1994. Short-term freedom from disease progression after 1-125 prostate implantation. Int J Radiat Oncol Biol Phys 30:405–409.PubMedGoogle Scholar
  105. 105.
    Wallner K, Roy J, Harrison L. 1995. Dosimetry guidelines to minimize urethral and rectal morbidity following transperineal 1-125 prostate brachytherapy. Int J Radiat Oncol Biol Phys 32:465–471.PubMedGoogle Scholar
  106. 106.
    Blasko JC, Wallner K, Grimm PD, Radge H. 1995. Prostate specific antigen based disease control following ultrasound guided 125I implantation for stage T1/T2 prostatic carcinoma. J Urol 154:1096–1099.PubMedGoogle Scholar
  107. 107.
    Martinez A, Edmundsen GK, Cox RS, et al. 1985. Combination of external beam irradiation and multiple-site perineal applicator (MUPIT) for the treatment of locally advanced or recurrent prostatic, anorectal, and gynecological malignancies. Int J Radiat Oncol Biol Phys 11:391–398.PubMedGoogle Scholar
  108. 108.
    Puthawala AA, Syed AMN, Tansey L. 1985. Temporary iridium-192 implant in the management of carcinoma of the prostate. Endocuriether/Hyperthermia Oncol 1:25–33.Google Scholar
  109. 109.
    Mate TP, Gottesman J. 1995. Fractionated HDR conformai prostate brachy therapy. Proceedings of the 8th International Brachy therapy Conference. Nice, France, pp. 75–78.Google Scholar
  110. 110.
    Syed AMN, Puthawala A, Austin P, Cherlow J, Perley J, Tansey L, Shanberg A, Sawyer D, Baghdassarian R, Wachs B, Tomasulo J, Rao J, Syed R. 1992. Temporary iridium-192 implant in the management of carcinoma of the prostate. Cancer 69:2515–2524.PubMedGoogle Scholar
  111. 111.
    Martinez A, Gonzalez J, Stromberg J, Edmundson G, Plunkett M, Gustafson G, Brown D, Yan D, Vicini F, Brabbins D. 1995. Conformai prostate brachytherapy: Initial experience of a phase I/II dose-escalating trial. Int J Radiat Oncol Biol Phys 33:1019–1027.PubMedGoogle Scholar
  112. 112.
    Edmundson GK, Yan D, Martinez AA. 1995. Intraoperative optimization of needle placement and dwell times for conformai prostate brachytherapy. Int J Radiat Oncol Biol Phys 33:1257–1263.PubMedGoogle Scholar
  113. 113.
    Chalkely T. 1980. Ocular melanoma task force report. Am J Ophthalmol 90:723–733.Google Scholar
  114. 114.
    Stallard HB. 1966. Radiotherapy for malignant melanoma of the choroid. Br J Ophthalmol 50:147–155.PubMedGoogle Scholar
  115. 115.
    Packer S, Rotman M. 1980. Radiotherapy of choroidal melanoma with iodine-125. Ophthalmology 87:582–590.PubMedGoogle Scholar
  116. 116.
    Packer S, Rotman M, Salanitro P. 1984. Iodine-125 irradiation of choroidal melanoma: Clinical experience. Ophthalmology 91:1700–1708.PubMedGoogle Scholar
  117. 117.
    Shields JA, Augsburger JJ, Brady LW, Day JL. 1982. Cobaltplaque therapy of posterior uveal melanomas. Ophthalmology 89:1201–1207.PubMedGoogle Scholar
  118. 118.
    Brady LW, Shields JA, Augsburger JJ, Day JL. 1982. Malignant intraocular tumors. Cancer 49:578–585.PubMedGoogle Scholar
  119. 119.
    Petrovich Z, Luxton G, Langholz B, Astrahan MA, Liggett PE. 1992. Episcleral plaque radiotherapy in the treatment of uveal melanomas. Int J Radiat Oncol Biol Phys 24:247–251.PubMedGoogle Scholar
  120. 120.
    Quivey JM, Char DH, Phillips TL, Weaver KA, Castro JR, Kroll, SM. 1993. High intensity 125-iodine (125I) plaque treatment of uveal melanoma. Int J Radiat Oncol Biol Phys 26: 613–618.PubMedGoogle Scholar
  121. 121.
    Fontanesi J, Meyer D, Xu S, Tai D. 1993. Treatment of choroidal melanoma with 1-125 plaque. Int J Radiat Oncol Biol Phys 26:619–623.PubMedGoogle Scholar
  122. 122.
    Valcarcel F, Valverde S, Cardenes H, Cajigal C, De La Torre A, Magallon R, Regueiro C, Encinas JL, Aragon G. 1994. Episcleral iridium-192 wire therapy for choroidal melanomas. Int J Radiat Oncol Biol Phys 30:1091–1097.PubMedGoogle Scholar
  123. 123.
    Finger PT, Buffa A, Mishra S, Berson A, Bosworth JL, Vikram B. 1994. Palladium 103 plaque radiotherapy for uveal melanoma. Ophthalmology 101:256–263.PubMedGoogle Scholar
  124. 124.
    Shields CL, Shields JA, DePotter PD, Singh AD, Hernandez C, Brady LW. 1995. Treatment of non-resectable malignant iris tumours with custom designed plaque radiotherapy. Br J Ophthal 79:306–312.Google Scholar
  125. 125.
    Yankauer S. 1922. Two cases of lung tumour treated bronchoscopically. New York Med J 21:741–742.Google Scholar
  126. 126.
    Armstrong JG. 1993. High dose rate remote afterloading brachytherapy for lung and esoph-ageal cancer. Semin Radiat Oncol 3:270–277.PubMedGoogle Scholar
  127. 127.
    Bewwinek J, Bruton PA, et al. 1991. The use of high dose rate endobronchial brachytherapy to palliate symptomatic endobronchial recurrence of previously irradiated bronchogenic carcinoma. Int J Radiat Oncol Biol Phys 22:23–30.Google Scholar
  128. 128.
    Burt P, O’Driscoll R, Notley M, et al. 1990. Intraluminal irradiation for the palliation of lung cancer with the high dose rate micro-Selectron. Thorax 45:765–768.PubMedGoogle Scholar
  129. 129.
    Fass DE, Armstrong JG, Harrison LB, et al. 1990. Fractional high dose endobronchial treatment for recurrent lung cancer. Endocuriether/ Hypertherm Oncol 6:211–215.Google Scholar
  130. 130.
    Grafton C, Lam S, Voss N, et al. 1991. High dose rate endobronchial brachytherapy using the Microselectron (abstr). Lung Cancer 7(Suppl. 1):97.Google Scholar
  131. 131.
    Hatlevoll R, Karlsen K, Aamdal S, et al. 1991. Endobronchial radiotherapy for malignant bronchial obstruction or recurrence (abstr). Lung Cancer 7(Suppl. 1):95.Google Scholar
  132. 132.
    Miller J, Phillips T. 1990. Neodymium-YAG laser and brachytherapy in the management of inoperable bronchogenic carcinoma. Selectron Brachyther J 1(Suppl. ••):23–29.Google Scholar
  133. 133.
    Seagren S, Harreil J. 1990. Prospective trial of palliative high dose rate endobronchial irradiation with or without laser for recurrent non-small cell lung cancer (abstr). Proc Am Soc Clin Oncol 9:224.Google Scholar
  134. 134.
    Nori D, Hilaris BS, Martini N. 1987. Intraluminal irradiation in bronchogenic carcinoma. Surg Clin North Am 67:1093–1102.PubMedGoogle Scholar
  135. 135.
    Macha HN, Koch K, Stadler M, Schumacher W, Kurmacher D. 1987. New technique for treating occlusive and stenosing tumours of the trachea and main bronchi: Endobronchial irradiation by high dose iridium-192 combined with laser canalization. Thorax 42:511–515.PubMedGoogle Scholar
  136. 136.
    Aygun C, Weiner S, Scariato A, Spearman D, Stark L. 1992. Treatment of non-small cell lung cancer with external beam: Radiotherapy and high dose rate brachytherapy. Int J Radiat Oncol Biol Phys 23:127–132.PubMedGoogle Scholar
  137. 137.
    Speiser B, Spratling L. 1992. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation. Int J Radiat Oncol Biol Phys 24:551–553.Google Scholar
  138. 138.
    Zajac AJ, Kohn ML, Heiser D, Peters JW. 1993. High-dose rate intraluminal brachytherapy in the treatment of endobronchial malignancy. Radiology 187:571–575.PubMedGoogle Scholar
  139. 139.
    Chang L-F, Horvath J, Peyton W, Ling S-S. 1994. High dose rate afterloading brachytherapy in malignant airway obstruction of lung cancer. Int J Radiat Oncol Biol Phys 28:589–596.PubMedGoogle Scholar
  140. 140.
    Sur RK, Mahomed GA, Pacella JA, Levin VC, Feldman C, Donde B. 1995. Initial report on the effectiveness of high dose rate brachytherapy in the treatment of hemoptysis in lung cancer. Endocuriether/Hyperthermia Oncol 11:2.Google Scholar
  141. 141.
    Sur RK, Singh DP, Sharma SC, et al. 1992. Radiation therapy of esophageal cancer: Role of high dose rate brachytherapy. Int J Radiat Oncol Biol Phys 22:1043–1046.PubMedGoogle Scholar
  142. 142.
    Fontanesi J, Rodriguez R, Robison JC. 1989. Intracavitary irradiation as a primary treatment for unresectable esophageal carcinoma. Endocuriether/Hypertherm Oncol 5:231–234.Google Scholar
  143. 143.
    Flores AD. 1989. Cancer of the Oesophagus and Cardia: An Overview of Radiotherapy. Proceedings of the Brachytherapy Working Conference 5th International Selectron Users’ Meeting. Hauge, The Netherlands. Netherlands: Nucletron International, pp. 427–438.Google Scholar
  144. 144.
    Hishikawa Y, Kurisu K, Taniguchi M, et al. 1991. High dose rate intraluminal brachytherapy for esophageal cancer: 10 years experience in Hyogo College of Medicine. Radiother Oncol 21:107–114.PubMedGoogle Scholar
  145. 145.
    Gaspar L, Barnett R, Kocha WI, et al. 1992. High dose rate esophageal brachytherapy: Initial experience. Endocuriether/Hypertherm Oncol 8:5–10.Google Scholar
  146. 146.
    Kaul TK, Rowland CG, Pagliero KM. 1989. Carcinoma of the esophagus: Treatment with radical surgery or brachytherapy. Proceedings of the Brachytherapy Working Conference 5th Internations Selectron Users’ Meeting. Hague, The Netherlands. Netherlands: Nucletron, pp. 449–458.Google Scholar
  147. 147.
    Wei-bo Y. 1989. Brachytherapy of carcinoma of the esophagus in China. Proceedings of the Brachytherapy Working Conference 5th International Selectron Users’ Meeting. Hague, The Netherlands. Netherlands: Nucletron International, pp. 439–441.Google Scholar
  148. 148.
    Harey M, Nishio M, Kagami Y, Narimatsu N, Saito A, Sakurai T. 1992. Intracavitary brachytherapy combined with external-beam irradiation for squamous cell carcinoma. Int J Radiat Oncol Biol Phys 24:235–240.Google Scholar
  149. 149.
    Gaspar LE, Qian C, Kocha WI, Coia LR, Herskovic A, Graham M. 1995. A phase I/II study of external beam radiation, brachytherapy and concurrent chemotherapy in localized cancer of the esophagus (RTOG 9207): Preliminary toxicity report (abstr). Int J Radiat Oncol Biol Phys 32(Suppl. 1):160.Google Scholar
  150. 150.
    Suit H, Spiro I. 1995. Radiation as a therapeutic modality in sarcomas of soft tissue. Hematol Oncol Clin North Am 9:733–746.PubMedGoogle Scholar
  151. 151.
    Rosenberg SA, Tepper J, Glatstein E, et al. 1982. The treatment of soft-tissue sarcomas of the extremities: Prospective randomized evaluation of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann Surg 196: 305–315.PubMedGoogle Scholar
  152. 152.
    Pisters PWT, Harrison LB, Leung DHY, Woodruff JM, Casper ES, Brennan MF. 1996. Long-term results of a prospectiove randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol 14:859–868.PubMedGoogle Scholar
  153. 153.
    Meigooni AS, Meli JA, Nath R. 1988. A comparison of solid phantoms with water for dosimetry of 125I, model 6702 brachytherapy sources. Med Phys 15:695–701.PubMedGoogle Scholar
  154. 154.
    Meigooni AS, Nath R. 1992. Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylinder symmetry. Med Phys 19:401–408.PubMedGoogle Scholar
  155. 155.
    Teirstein PS, Massullo V, Jani S, Popma J, Mintz GS, Russo RJ, Schatz RA, Guarnari EM, Steuterman S, Morris NB, Leon MB, Tripuraneni P. 1997. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. New England J of Med 336:1697–1703.Google Scholar
  156. 156.
    Weintraub WS, Mauldin PD, Becker E, Kosinski AS, King SB III. 1995. A comparison of the costs of and quality of life after coronary angioplasty or coronary surgery for multivessel coronary artery disease. Results from the Emory angioplasty versus surgery trial. Circulation 92:2831–2840.PubMedGoogle Scholar
  157. 157.
    Pocock SJ, Henderson RA, Rickards AF, Hampton JR, King SB III, Hamm CW, Puel J, Heub W, Goy JJ, Rodriguez A. 1995. Meta analysis of randomized trials comparing coronary angioplasty with bypass surgery. Lancet 346:1184–1189.PubMedGoogle Scholar
  158. 158.
    Serruys PW, deJaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, van den Heuvel P, Delcan J, Morel M-A. 1994. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331:489–495.PubMedGoogle Scholar
  159. 159.
    Fischman DL, Leon MB, Bairn DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein PS, Fiosh RD, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S. 1994. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 331: 496–501.PubMedGoogle Scholar
  160. 160.
    Fairchild RG, Bond VP. 1984. Photon activation therapy. Strahlentherapie 160:758–763.PubMedGoogle Scholar
  161. 161.
    Nath R, Bongiorni P, Rockwell S. 1990. Iododeoxyuridine radiosensitization by low and high energy photons for brachytherapy dose rates. Radiat Res 124:249–258.PubMedGoogle Scholar
  162. 162.
    Nath R, Bongiorni P, Rossi PI, Rockwell S. 1990. Enhanced IUdR radiosensitization by 241Am photons relative to 226Ra and 125I photons at 0.72Gy/hr. Int J Radiat Oncol Biol Phys 18:1377–1385.PubMedGoogle Scholar
  163. 163.
    Fairchild RG, Kalef-Erza J, Packer S, et al. 1987. Samarium-145: A new brachytherapy source. Phys Med Biol 32:847–858.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ravinder Nath
  • Lynn D. Wilson

There are no affiliations available

Personalised recommendations