Computer-Controlled Delivery of 3D Conformal Radiation Treatments

  • Radhe Mohan
  • Gikas Mageras
  • Qiuwen Wu
Part of the Cancer Treatment and Research book series (CTAR, volume 93)


The ability of radiation therapy to cure cancer depends in part on its capacity to completely eradicate the localized disease without causing severe normal tissue injury. There is evidence that the escalation of dose targeted at the tumor would lead to an increase in local control and consequently to an improvement in survival. However, current levels of dose are limited by the tolerances of intervening normal tissues. Three-dimensional conformal radiation therapy (3D CRT) is now widely accepted as an important means of achieving higher tumor dose without concomitant increases in normal tissue doses.


Dose Distribution Monitor Unit Electronic Portal Imaging Device Multileaf Collimator Gantry Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mackie TR, Holmes TW, Swerdloff S, Reckwerdt PJ, Deasy JO, Yang J, Paliwal BR, Kinsella TJ. 1993. Tomotherapy: A new concept for the delivery of conformai radiotherapy. Med Phys 20:1709–1719.PubMedCrossRefGoogle Scholar
  2. 2.
    Mohan R. 1995. Field shaping for three-dimensional conformai radiation therapy and multi-leaf collimation. Semin Radiat Oncol 5:86–99.PubMedCrossRefGoogle Scholar
  3. 3.
    Mohan R. 1990. Secondary field shaping, asymmetrical collimators and Multileaf Collimators. Woodbury, NY: American Institute of Physics, Proceedings of AAPM Summer School, Kansas University, Lawrence, Kansas, pp. 307–345.Google Scholar
  4. 4.
    Wang X, Spirou S, LoSasso T, Chui CS, Mohan R. 1996. Dosimetric verification of an intensity modulated treatment. Med Phys 23:317–328.PubMedCrossRefGoogle Scholar
  5. 5.
    Chui CS, LoSasso T, Spirou S. 1994. Dose calculations for photon beams with intensity modulation generated by dynamic jaw or multi-leaf collimations. Med Phys 21:1237–1243.PubMedCrossRefGoogle Scholar
  6. 6.
    Chui CS, Mohan R. 1993. Algorithms for dynamic jaws and multi-leaf collimators, II — Fluence distribution (abstr). Med Phys 20:885.Google Scholar
  7. 7.
    Wu Q, Mohan R, Stein J, Wang X, Yang J. 1996. The impact of leaf width of MLC on intensity-modulated 3DCRT of prostate (abstr). Med Phys 23:1170–1170.CrossRefGoogle Scholar
  8. 8.
    Mageras GS, Podmaniczky K, Mohan R. 1992. A model for computer controlled delivery of 3D conformai treatments. Med Phys 19:945–954.PubMedCrossRefGoogle Scholar
  9. 9.
    Fraass BA, McShan DL, Kessler ML, Matrone GM, Lewis JD, Weaver TA. 1995. A computer-controlled conformai radiotherapy system I: Overview. Int J Radiat Oncol Biol Phys 33: 1139–1157.PubMedCrossRefGoogle Scholar
  10. 10.
    Kessler ML, McShan DL, Fraass BA. 1995. A computer-controlled conformai radiotherapy system. III: Graphical simulation and monitoring of treatment delivery. Int J Radiat Oncol Biol Phys 33:1173–1180.PubMedCrossRefGoogle Scholar
  11. 11.
    Austin-Seymour M, Caplan R, Russell K, Laramore G, Jacky J, Wootton P, Hummel S, Lindsley K, Griffin T. 1994. Impact of a multileaf collimator on treatment morbidity in localized carcinoma of the prostate. Int J Radiat Oncol Biol Phys 30:1065–1071.PubMedCrossRefGoogle Scholar
  12. 12.
    Du MN, Yu CX, Symons M, Yan D, Taylor R, Matter RC, Gustafson G, Martinez A, Wong JW. 1995. A multileaf collimator field prescription preparation system for conventional radiotherapy. Int J Radiat Oncol Biol Phys 32: 513–520.PubMedCrossRefGoogle Scholar
  13. 13.
    Klein EE, Harms WB, Low DA, Willcut V, Purdy JA. 1995. Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation and quality assurance. Int J Radiat Oncol Biol Phys 33:1195–1208.PubMedCrossRefGoogle Scholar
  14. 14.
    LoSasso TJ, Chui CS, Kutcher GJ, Leibel SA, Fuks Z, Ling CC. 1993. The use of a multi-leaf collimator for conformai radiotherapy of carcinomas of the prostate and nasopharynx. Int J Radiat Oncol Biol Phys 25:161–170.PubMedCrossRefGoogle Scholar
  15. 15.
    Powlis WD, Smith AR, Cheng E, Galvin JM, Villari F, Bloch P, Kligerman MM. 1993. Initiation of multileaf collimator conformai radiation therapy. Int J Radiat Oncol Biol Phys 25:171–179.PubMedCrossRefGoogle Scholar
  16. 16.
    Mohan R, Wang X, Jackson A, Bortfeld T, Boyer AL, Kutcher GJ, Leibel SA, Fuks Z, Ling CC. 1994. The potential and limitations of the inverse radiotherapy technique. Radiother Oncol 32:232–248.PubMedCrossRefGoogle Scholar
  17. 17.
    Convery DJ, Rosenbloom ME. 1992. The generation of intensity-modulated fields for conformai radiotherapy by dynamic collimation. Phys Med Biol 37:1359–1374.CrossRefGoogle Scholar
  18. 18.
    Bortfeld T, Kahler DL, Waldron TJ, Boyer AL. 1994. X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 28: 723–730.PubMedCrossRefGoogle Scholar
  19. 19.
    Spirou SV, Chui CS. 1994. Generation of arbitrary fluence profiles by dynamic jaws or multileaf collimators. Med Phys 21:1031–1041.PubMedCrossRefGoogle Scholar
  20. 20.
    Mackie TR, Holmes TW, Reckwerdt PJ, Yang J, Swerdloff S, Deasy JO, DeLuca PM Jr, Paliwal BR, Kinsella TJ. Tomotherapy: A proposal for a dedicated computer-controlled delivery and verification system for conformai radiotherapy. (Christie Hospital NHS Trust, Manchester, UK, Proceedings of XIth.)Google Scholar
  21. 21.
    Carol MP. 1995. Peacock: A system for planning and rotational delivery of intensity-modulated fields. Int J Imaging Syst Technol 6:56–61.CrossRefGoogle Scholar
  22. 22.
    Yu CX. 1995. Intensity-modulated arc therapy with dynamic multileaf collimation: An alternative to tomotherapy. Phys Med Biol 40:1435–1449.PubMedCrossRefGoogle Scholar
  23. 23.
    Burman C, Armstrong J, Brewster L, Leibel S, Mohan R, Fuks Z, Kutcher GJ. 1993. Dose distribution comparison for multi-leaf collimator and cerrobend shaped fields for 3-dimensional lung plans (abstr). Med Phys 20: 925–925.Google Scholar
  24. 24.
    Burman C, Leibel SA, Mohan R, Kutcher GJ, Fuks Z. 1994. Comparison of dose distributions for 3D brain plans with cerrobend and multi-leaf collimators (abstr). Med Phys 21:885.Google Scholar
  25. 25.
    Shentall GS, Crockford DJ, Fernandes EM, Mayles WPM. 1993. The application of a multileaf collimator to conformai therapy. Proceedings of ESTRO Physics Meeting, Prague, Czechoslovakia, p. 99.Google Scholar
  26. 26.
    Zhu Y, Boyer AL, Desobry GE. 1992. Dose distributions of x-ray fields as shaped with multileaf collimators. Phys Med Biol 37:163–174.PubMedCrossRefGoogle Scholar
  27. 27.
    Mohan R, Wu Q, Wang X-H, Stein J. 1996. Intensity modulation optimization, lateral transport of radiation and margins. Med Phys, in press.Google Scholar
  28. 28.
    Mageras GS, Fuks Z, O’Brien J, Brewster LJ, Burman C, Chui CS, Leibel SA, Ling CC, Masterson ME, Mohan R, Kutcher GJ. 1994. Initial clinical experience with computer-controlled conformai radiotherapy of the prostate using a 50-MeV medical microtron. Int J Radiat Oncol Biol Phys 30:971–978.PubMedCrossRefGoogle Scholar
  29. 29.
    McShan DL, Fraass BA, Kessler ML, Matrone GM, Lewis JD, Weaver TA. 1995. A computer-controlled conformai radiotherapy system. II: Sequence processor. Int J Radiat Oncol Biol Phys 33:1159–1172.PubMedCrossRefGoogle Scholar
  30. 30.
    Balter JM, Martel MK, Sandler HM, Ross DA, Forster KM, McShan DL, Fraass BA, Ten Haken RK. 1995. Clinical implementation of radio-surgery using a multileaf collimator and a computer controlled radiotherapy system (abstr). Int J Radiat Oncol Biol Phys 32:169–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Radhe Mohan
  • Gikas Mageras
  • Qiuwen Wu

There are no affiliations available

Personalised recommendations