Skip to main content

Nutritional and endocrine modulation of intracellular calcium: Implications in obesity, insulin resistance and hypertension

  • Chapter
Book cover Molecular and Cellular Effects of Nutrition on Disease Processes

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 26))

Abstract

Regulation of intracellular Ca2+ ([Ca2+]i) plays a key role in obesity, insulin resistance and hypertension, and [Ca2+]i disorders may represent a fundamental factor linking these three conditions. We have shown insulin to be a direct vasodilator, attenuating voltage-gated Ca2+ influx and stimulating Ca2+-ATPase transcription via a glucose-6-phosphate response element. These result in a net decrease in [Ca2+]i and thereby decrease vascular resistance, while these effects are blunted in insulin resistance, leading to increased vascular resistance. Consistent with this concept, pharmacological amplification of peripheral insulin sensitivity results in reduced arterial pressure. While insulin regulates [Ca2+]i, Ca2+ also regulates insulin signaling, as increasing [Ca2+]i impairs insulin signaling in some systems, possibly due to Ca2+ inhibition of insulin-regulated dephosphorylation. Finally, in recent studies of the mouse agouti gene, we have also demonstrated increased [Ca2+]i to play a key role in adipocyte lipogenesis, as follows. We have found dominant agouti mutants to exhibit increased [Ca2+]i in most tissues, leading to increased vascular reactivity and insulin resistance in vascular smooth muscle and skeletal muscle cells, respectively. Further, we have found recombinant agouti protein to directly increase [Ca2+]i in a variety of cells, including murine and human adipocytes, and to stimulate both the expression and activity of adipocyte fatty acid synthase and increase triglyceride accumulation in a Ca2+-dependent manner. These effects can be mimicked by stimulation of Ca2+ influx and blocked by Ca2+ channel inhibition, while treatment of mice with a Ca2+ antagonist attenuates agouti-induced obesity. Since humans express agouti in adipose tissue, it may similarly exert paracrine effects on [Ca2+]i and thereby stimulate de novo lipogenesis and promote obesity. Thus, Ca2+ signaling represents a target for therapeutic intervention in obesity as well as hypertension and insulin resistance. (Mol Cell Biochem 188: 129–136, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reaven G: Role of insulin resistance in human disease. Diabetes 37: 1595–1607, 1988

    Article  PubMed  CAS  Google Scholar 

  2. Zemel MB: Insulin resistance, obesity and hypertension: An overview. J Nutrl 25: 1715S–1717S, 1995

    Google Scholar 

  3. Rocchini AP: Insulin resistance and blood pressure regulation in obese and non-obese subjects. Hypertension 17: 837–842, 1991

    Article  PubMed  CAS  Google Scholar 

  4. Rowe JW, Young JB, Minaker KL, Stevens AL, Palotta, Landsberg L: Effect of insulin and glucose infusion on sympathetic nervous system activity in normal man. Diabetes 30: 219–225, 1981

    PubMed  CAS  Google Scholar 

  5. Anderson EA, Hoffman RP, Balor TW, Sinkey CA, Mark AL: Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87: 2246–2252, 1991

    Article  PubMed  CAS  Google Scholar 

  6. Anderson EA, Balor TW, Hoffman RP, Sinkey CA, MarkAL: Increases sympathetic activity but not blood pressure in borderline hypertensive humans. J Clin Invest 89: 621–627, 1992

    Google Scholar 

  7. Zemel MB, Penler JD, Sowers JR, Simpson L: Hypertension in insulin-resistant Zucker obese rats is independent of sympathetic neural support. Am J Physiol 262: E368–E371, 1992

    PubMed  CAS  Google Scholar 

  8. Zemel MB, Reddy S, Shehin S, Lockerte W, Sowers JR: Vascular reactivity in Zucker obese rats: Role of insulin resistance. JVasc Med Biol 2: 81–85, 1990

    Google Scholar 

  9. Zemel MB, Reddy S, Sowers JR: Insulin attenuation of vasoconstrictor responses to phenylephrine in Zucker lean and obese rats. Am J Hypertension 4: 537–539, 1991

    Article  CAS  Google Scholar 

  10. Zemel MB, Johnson BA, Ambrozy SA: Insulin-stimulated vascular relaxation: Role of Ca2+-ATPase. Am J Hypertension 5: 637–641, 1992

    Article  CAS  Google Scholar 

  11. Kim YC, Zemel MB: Insulin increases vascular smooth muscle recovery from intracellular calcium loads. Hypertension 22: 74–77, 1993

    Article  PubMed  CAS  Google Scholar 

  12. Kahn AM, Seidel CL, Allen JC, O’Neil RG: Insulin reduces contraction and intracellular calcium concentration in vascular smooth muscle. Hypertension 22: 735–742, 1993

    Article  PubMed  CAS  Google Scholar 

  13. Juncos LA, Ito S, Carretero OA: Disparate effects of insulin on isolated rabbit afferent and efferent arterioles. Hypertension 20: 403, 1992

    Google Scholar 

  14. Hall JE, Coleman TG, Mizelle HL: Does chronic hyperinsulinemia cause hypertension. Am J Hypertension 2: 171–173, 1989

    Article  CAS  Google Scholar 

  15. Brands MW, Mizelle HL, Gaillard CA, Hildebrandt DA, Hall JE: The hemodynamic response to chronic hyperinsulinemia in conscious dogs. Am J Hypertension 4: 164–168, 1991

    Article  CAS  Google Scholar 

  16. Morgan DA, Ray CA, Balon TW, Mark AL: Metformin increases insulin sensitivity and lowers arterial pressure in spontaneously hypertensive rats. Hypertension 20: 421, 1992

    Google Scholar 

  17. Dubey RK, Zhang HY, Reddy SR, Buegehold MA, Kotchen TA: Pioglitazone attenuates hypertension and growth of renal arteriolar smooth muscle cells in rats. Am J Phsyiol 265: R276–R732, 1993

    Google Scholar 

  18. Pershadsingh HA, Szollosi J, Bensorn S, Hyun WC, Feurstein BG, Kurtz TW: Effect of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 21: 1020–1023, 1993

    Article  PubMed  CAS  Google Scholar 

  19. Cooper DR, Foote J, Petch C, SchofieldPM: Chronic effects of glucose on insulin signaling in A-10 vascular smooth muscle cells. Arch Biochem Biophys 302: 490–498, 1993

    Article  PubMed  CAS  Google Scholar 

  20. Ban, WJ, Abel MA, Zemel MB: Insulin regulation of vascular smooth muscle glucose transport in insulin-sensitive and resistant rats. Hor Metab Res 28: 271–275, 1996

    Article  Google Scholar 

  21. Zemel MB: Insulin resistance vs. Hyperinsulinemia in hypertension: Insulin regulation of Ca2+ transport and Ca2+ regulation of insulin sensitivity. J Nutr 125: 1738S–1743S, 1995

    PubMed  CAS  Google Scholar 

  22. Standley PR, Zhang F, Ram JL, Zemel MB, Sowers JR: Insulin attenuates vasopressin-induced calcium transients and voltage-dependent calcium current in rat vascular smooth muscle cells. J Clin Invest 88: 1230–1236, 1991

    Article  PubMed  CAS  Google Scholar 

  23. Touyz RM, Tolloczko B, Schiffrin EL: Insulin attenuates agonist-evoked calcium transients in vascular smooth muscle cells. Hypertension 23(Suppl. I): 125–128, 1994

    Google Scholar 

  24. Kahn AM, Seidel CL, Allen JC, O’Neil RG: Insulin reduces contraction and intracellular calcium concentration in vascular smooth muscle. Hypertension 22: 735–742, 1993

    Article  PubMed  CAS  Google Scholar 

  25. Levy J, Zemel MB, Sowers JR: Role of cellular calcium metabolism in abnormal glucose metabolism and diabetic hypertension. Am J Med 87(Suppl. 6A): 155–165

    Google Scholar 

  26. Zemel MB, Bedford BA, Zemel PC, Marwah O, Sowers JR: Altered cation transport in non-insulin-dependent diabetics: Effects of dietary calcium. J Hypertension 6(Suppl. 4): S228–S230

    Google Scholar 

  27. Shehin SE, Sowers JR, Zemel MB: Impaired vascular smooth muscle 45Ca efflux and hypertension in Zucker obese rats. J Vasc Med Biol 1: 278–282, 1989

    Google Scholar 

  28. Abel MA, Zemel MB: Impaired recovery of vascular smooth muscle intracellular calcium following agonist stimulation in insulin resistant (Zucker obese) rats. Am J Hypertension 6: 500–504, 1993

    CAS  Google Scholar 

  29. Reddy S, Shehin S, Sowers JR, Dardas G, Zemel MB: Aortic 45Ca flux and blood pressure regulation in streptozotocin-induced diabetic rats. J Vasc Med Biol 2: 47–50, 1990

    Google Scholar 

  30. Zemel MB, Iannucci A, Moore JW: Role of insulin in regulating vascular smooth muscle Ca2+-ATPase expression. J Vasc Med Biol 4: 79–84

    Google Scholar 

  31. Kim YC, Zemel MB: Insulin stimulation of intracellular free Ca2+ recovery and Ca2+-ATPase gene expression in cultured vascular smooth muscle cells: Role of glucose-6-phosphate. Biochem J 311: 555–559, 1995

    PubMed  CAS  Google Scholar 

  32. Draznin B, Sussman K, Kao M, Lewis D, Sherman N: The existence of an optimal range of cytosolic free calcium for insulin-stimulated glucose transport in rat adipocytes. J Biol Chem 262: 14385–14388, 1987

    PubMed  CAS  Google Scholar 

  33. Draznin B: Cytosolic calcium and insulin resistance. Am J Kidney Dis 21(Suppl. 3): 32–38, 1993

    PubMed  CAS  Google Scholar 

  34. Segal S, Lloyd S, Sherman N, Sussman KE, Draznin B: Postprandial changes in cytosolic free calcium and glucose uptake in adipocytes in obesity and non-insulindependent diabetes mellitus. Horm Res 34: 39–44, 1990

    Article  PubMed  CAS  Google Scholar 

  35. Epstein M, Sowers JR: Diabetes mellitus and hypertension. Hypertension 19: 403–418, 1992

    Article  PubMed  CAS  Google Scholar 

  36. Bursztyn M, Raz I, Mekler J, Ben-Ishay D: Nitrendipine improves glucose tolerance and deoxyglucose uptake in hypertensive rats. Hypertension 23: 1051–1053, 1994

    Article  PubMed  CAS  Google Scholar 

  37. Beer NA, Jakubowicz DJ, Beer RM, Arocha IR, Nestler JE: Effects of nitrendipine on glucose tolerance and serum insulin and dehydro-epiandrosterone sulfate levels in insulin-resistant obese and hypertensive men. J Clin Endocrinology 76: 178–183, 1993

    Article  CAS  Google Scholar 

  38. Beer NA, Jakubowicz DJ, Beer RM: Disparate effects of insulin reduction with diltiazem on serum dehydroepiandrosterone sulfate levels in obese hypertensive men and women. J Clin Endocrinology 79: 1077–1081, 1994

    Article  CAS  Google Scholar 

  39. Byyny RL, LoVerde M, Mitchell W, Draznin B: Cytosolic calcium and insulin resistance in elderly patients. Am J Hypertension 5: 459–464, 1992

    CAS  Google Scholar 

  40. Harano Y, Dageyama A,Hirose J, Asakura Y, Yokota T, Ikebuchi M, Suzuki M, Omae T: Improvement of insulin sensitivity for glucose metabolism with the longacting Ca-channel blocker amlodipine in essential hypertensive subjects. Metabolism 44: 315–319, 1995

    Article  PubMed  CAS  Google Scholar 

  41. Draznin B, Lewis D, HoulderN, Sherman N, Adamo M, Garvey WT, LeRoigh D, Sussman K: Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology 125: 2341–2349, 1989

    Article  PubMed  CAS  Google Scholar 

  42. Dohm GL, Elton CW, Friedman JE, Pilch PF, Pories WJ, Atkinson SM Jr, Caro JF: Decreased expression of glucose transporter in muscle from insulin resistant patients. Am J Physiol 260: E459–E463, 1991

    PubMed  CAS  Google Scholar 

  43. Pederson O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB: Evidence altered expression of GLUT1 or GLUTS in skeletal muscle of patients with obesity or NIDDM. Diabetes 39: 865–870, 1990

    Article  Google Scholar 

  44. Handberg A, Vaag A, Damsba P, Beck-Nielsen H, Vinten J: Expression of insuilnregulatable glucose transporters in skeletal muscle from type 2 (non-insulindependent) diabetic patients. Diabetologia 33: 625–627, 1990

    Article  PubMed  CAS  Google Scholar 

  45. Begum N, Leitner W, Reusch J E-B, Sussman KE, Draznin B: Glut-4 phosphorylation and its intrinsic activity. J Biol Chem 268: 3352–3356, 1993

    PubMed  CAS  Google Scholar 

  46. Begum N, Sussman KE, Draznin B: Calcium-induced inhibition of phosphoserine phosphatase in insuiln target cells is mediated by the phosphorylation and activation of inhibitor 1. J Biol Chem 267: 5959–5963

    Google Scholar 

  47. Kida Y, Esposito-Del Puente A, Bogardus C, Mott DM: Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle. J Clin Invest 85: 476–481, 1990

    Article  PubMed  CAS  Google Scholar 

  48. Freidenberg GR, Henry RR, Klein HH, Reichart DR, Olefsky JM: Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjets. J Clin Invest 79: 240–250, 1987

    Article  PubMed  CAS  Google Scholar 

  49. Dent P, Lavoinne A, Nakielny S, Caudwell FB: The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348: 302–308, 1990

    Article  PubMed  CAS  Google Scholar 

  50. Munshi HG, Burks DJ, Joyal JL, White MF, Sacks DB: Ca2+ regulates calmodulin binding to IQ motifs in IRS-1. Biochemistry 35: 15883–15889, 1996

    Article  PubMed  CAS  Google Scholar 

  51. Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GL: Obesity, diabetes and neoplasia in yellow A vy/-mice: Ectopic expression of the agouti gene. FASEB J 8: 479–488, 1994

    PubMed  CAS  Google Scholar 

  52. Zemel MB, Moore WJ, Rahman MK, Moustaid N: Diazoxide antagonism of glybenclamide-induced Ca2+ signaling and lipogenic activity in 3T3-L1 adipocytes. Obesity Res 4: 28s, 1996

    Google Scholar 

  53. Draznin B, Sussman KE, Eckel RH, Kao M, Yost T, Sherman NA: Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J Clin Invest 82: 1848–1852, 1988

    Article  PubMed  CAS  Google Scholar 

  54. Bultman SJ, Michaud EJ, Woychik RP. Molecular characterization of the mouse agouti locus. Cell 71: 1195–1204, 1992

    Article  PubMed  CAS  Google Scholar 

  55. Michaud EJ, Bultman SJ, Stubbs LJ, Woychik RP: The embryonic letality of homozygous lethal yellow mice (A y/A y) is associated with the disruption of a novel RNA-binding protein. Genes Dev 7: 1203–1213, 1993

    Article  PubMed  CAS  Google Scholar 

  56. Michaud EJ, Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP: Differential expression of a new dominant mutant agouti allele (A iapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8: 1463–1472, 1994

    Article  PubMed  CAS  Google Scholar 

  57. Klebig ML, Wilkinson JE, Geisler JG, Woychik RP: Ectopic expression ofthe agouti gene in transgenic mice causes obesity, features of type II, and yellow fur. Proc Nat Acad Sci USA 92: 4728–4732, 1995

    Article  PubMed  CAS  Google Scholar 

  58. Zemel MB, Kim JH, Woychik RP, Michaud EJ, Kadwell SH, Patel IR, Wilkison WO: Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice. Proc Nat Acad Sci USA 92: 4733–4737, 1995

    Article  PubMed  CAS  Google Scholar 

  59. Kim JH, Kiefer LL, Woychik RP, Wilkison WO, Truesdale A, Ittoop O, Willard D, Nichols J, Zemel MB: Agouti regulation of intracellular calcium: role of melanocortin receptors. Am J Physiol 272: E379–E384, 1997

    PubMed  CAS  Google Scholar 

  60. Wolff GL: Growth of inbred yellow (A y/a) and non-yellow (a/a) mice in parabiosis. Genetics 48: 1041–1058, 1963

    PubMed  CAS  Google Scholar 

  61. Johnson PR, Hirsch J: Cellularity of adipose depot in six strains of genetically obese mice. J Lipid Res 13: 2–11, 1972

    PubMed  CAS  Google Scholar 

  62. Jones BH, Kim JH, Zemel MB, Woychik RP, Michaud EJ, Wilkison WO, Moustaid N: Upregulation of adipocyte metabolism by agouti protein: Possible paracrine actions in yellow mouse obesity. Am J Physiol 270: E192–E196, 1996

    PubMed  CAS  Google Scholar 

  63. Claycombe KH, Jones BH, Standridge MK, Wilkison WO, Zemel MB, Guo YS, Moustaid N: Transcriptional regulation ofthe adipocyte fatty acid synthase gene by the agouti gene product: Interaction with insulin. FASEB J 11:A352, 1997

    Google Scholar 

  64. Zemel MB, Kim JH, Jones BH, Moore JW, Woychik RP, Moustaid N, Wilkison WO: Agouti gene product regulation of intracellular free calcium results in stimulation of fatty acid synthase. Obesity Res 3: 338s, 1995

    Article  Google Scholar 

  65. Moore JW, Willard D, Moustaid N, Wilkison WO, Zemel MB: Role of intracellular calcium in agouti and insulin modulation of fatty acid synthase. FASEB J 10: A187, 1996

    Google Scholar 

  66. Kwon HY, Bultman SJ, Loffler C, Chen WJ, Furdon PJ, Powell JG, Usala AL, Wilkison W, Hansmann I, Woychik RP: Molecular structure and chromosomal mapping of the human homologue of the agouti gene. Proc Nat Acad Sci USA 91: 9760–9764, 1994

    Article  PubMed  CAS  Google Scholar 

  67. Kim JH, Mynatt RL, Moore JW, Woychik RP, Moustaid N, Wilkison WO and Zemel MB: The effects of calcium channel blockade on agouti-induced obesity. FASEB J 10: 1646–1652

    Google Scholar 

  68. Xue B, Wilkison WO, Mynatt RL, Moustaid N, Zemel MB: The agouti gene product stimulates pancreatic ² cell Ca2+ signaling and insulin release. FASEB J 11: A320, 1997

    Google Scholar 

  69. Mynatt RL, Miltenberger RJ, Klebig ML, Zemel MB, Wilkinson JE, Wilkison WO, Woychik RP: Combined effects of insulin treatment and adipose tissue-specific agouti expression on the development of obesity. Proc Nat Acad Sci USA 94: 919–922, 1997

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zemel, M.B. (1998). Nutritional and endocrine modulation of intracellular calcium: Implications in obesity, insulin resistance and hypertension. In: Pierce, G.N., Izumi, T., Rupp, H., Grynberg, A. (eds) Molecular and Cellular Effects of Nutrition on Disease Processes. Developments in Molecular and Cellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5763-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5763-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7641-5

  • Online ISBN: 978-1-4615-5763-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics