Skip to main content

Quantum Well Infrared Photodetectors: Device Physics and Light Coupling

  • Chapter
Intersubband Transitions in Quantum Wells: Physics and Devices

Abstract

It is customary to make infrared (IR) detectors in the long wavelength range (8 – 20 urn) by utilizing the interband transition which promotes an electron across the bandgap (Eg) from the valence band to the conduction. These photo-electrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (hv) must be higher than the Eg of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by manipulating Eg of the photosensitive material. Detection of very long wavelength IR radiation up to 20 μm requires small bandgaps down to 62 meV. Examples of such materials meeting these requirements are Hg1-xCdxTe and Pb1-xSnxTe in which the energy gap can be controlled by varying x. It is well known that these low bandgap materials are more difficult to grow and process than large bandgap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersubband transitions in multi quantum well (MQW) structures made of large bandgap semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. D. Gunapala and K. M. S. V. Bandara, in Physics of Thin Films, edited by M. H. Francombe and J. L. Vossen, Vol. 21 pp 113–237, Academic Press, NY, 1995.

    Google Scholar 

  2. B. F. Levine, J. Appl. Phys. 74, RI (1993).

    Article  Google Scholar 

  3. K. K. Choi, J. Appl. Phys. 73, 5230 (1993).

    Article  ADS  Google Scholar 

  4. B. F. Levine, C. G. Bethea, G. Hasnain, V. O. Shen, E. Pelve, R. R. Abbott, and S. J. Hsieh, Appl. Phys. Lett, 56, 851 (1990).

    Article  ADS  Google Scholar 

  5. E. Pelve, F. Beltram, C. G. Bethea, B. F. Levine, V. O. Shen, S. J. Hsieh, R. R. Abbott, J. Appl. Phys. 66, 5656 (1989).

    Article  ADS  Google Scholar 

  6. S. D. Gunapala, J. K. Liu, J. S. Park, M. Sundaram, C. A. Shott, T. Holter, T. L. Lin, S. T. Massie, P. D. Maker, R. E Muller, and G. Sarusi, IEEE Trans. Ele. Devices, vol. 44, 45–59 (1997).

    Article  ADS  Google Scholar 

  7. S. V. Bandara, S. D. Gunapala, J. K. Liu, J. Mumolo, E. Luong, W. Hong and D. K. Sengupta, to be published.

    Google Scholar 

  8. K. W. Goossen, S. A. Lyon, J. Appl. Phys, vol. 63, 5149 (1988).

    Article  ADS  Google Scholar 

  9. G. Hansain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, Appl. Phys. lett., vol. 54, 2515 (1989).

    Article  ADS  Google Scholar 

  10. J. Y. Andersson and L. Lundqvist, Appl. Phys, Lett. vol. 59, 857 (1991).

    Article  ADS  Google Scholar 

  11. J. Y. Andersson, L. Lundqvist and Z. F. Paska, J. Appl. Phys. vol. 71, 3600 (1991).

    Article  ADS  Google Scholar 

  12. G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. V. Bandara, R. E Leibenguth, and J. Y. Andersson J. Appl Phys vol 76 4989 (1994).

    Article  ADS  Google Scholar 

  13. B. Xing, and H. C. Liu, J. Appl. Phys., vol. 80, 1214 (1996).

    Article  ADS  Google Scholar 

  14. G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. V. Bandara, and R. E. Leibenguth, Appl. Phys. Lett., vol. 64, pp 960–962 (1994).

    Article  ADS  Google Scholar 

  15. S. Bandara, S. Gunapala, J. Liu, W. Hong and J. Park, SPIE Vol. 2999, 103 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bandara, S. et al. (1998). Quantum Well Infrared Photodetectors: Device Physics and Light Coupling. In: Li, S.S., Su, YK. (eds) Intersubband Transitions in Quantum Wells: Physics and Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5759-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5759-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8164-8

  • Online ISBN: 978-1-4615-5759-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics