Skip to main content

Cardiac Angiotensin II Subtype 2 Receptor Signal Transduction Pathways: Embryonic Cardiomyocytes and Human Heart

  • Chapter
Angiotensin II Receptor Blockade Physiological and Clinical Implications

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 2))

Summary

The distribution of the Ang II-receptor subtype 2 (AT2-R) in the heart of various species from chick embryo to neonatal rat, adult rat, rabbit and man is reviewed. Human heart has a predominance of AT2-R while rat and rabbit have considerably less receptors suggesting caution in the extrapolation of data from species with few AT2-R to human. AT2-R signaling mechanisms in the heart utilize phosphoinositol hydrolysis, PKC activation, tyrosine kinase activation and likely PI 3 kinase activation as well. In contrast to AT1-R, the AT2-R is not linked with cAMP signaling. The development of cardiac hypertrophy and subsequent heart failure is associated with alterations of AT2-R density and undoubtedly a disturbance of the usual mechanisms whereby the effect of angiotensin on the heart is manifested.

“It has been concluded that most of the well-known actions of Ang II are mediated by the AT1-receptor subtype” Timmermans et al. [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Timmermans BMWM, Benfield P, Chiu A, Herblin W, Wong P, Smith RD. 1992. Angiotensin II receptors and functional correlates. Am J Hypertension 5:221S–235S.

    Article  CAS  Google Scholar 

  2. Chiu AT, Herblin WF, Ardecky RJ, Himmelsbach RJ, Achucholowsky A, Connoly CJ, Neergaard SJH, Van-Nieuwenhze MS, Sebastian A, Quin J, et al. 1989. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203.

    Article  PubMed  CAS  Google Scholar 

  3. Dudley DT, Panek RL, Major TC, Lui GH, Bruns RF, Klinkefus BA, Weishaar RE. 1990. Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol 38:370–377.

    PubMed  CAS  Google Scholar 

  4. Whitebread S, Mele M, Kamber B, de Gasparo M. 1969. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284–291.

    Article  Google Scholar 

  5. Bumpus FM, Catt KJ, Chiu AT, de Gasparo M, Goodfriend T, Husain A, Peach MU, Taylor DG, Timmermans PBMWM. 1991. Nomenclature for angiotensin receptors: A report of the nomenclature committee of the Council for High Blood Pressure Research. Hypertension 17:720–721.

    Article  PubMed  CAS  Google Scholar 

  6. Ichiki T, Herold CL, Kambayashi Y, Bardhan S, Inagami T. 1994. Cloning of the cDNA and the genomic DNA of the mouse angiotensin II type 2 receptor. Biochim Biophys Acta 1189:247–250.

    Article  PubMed  CAS  Google Scholar 

  7. Kambayashi Y, Bardhan S, et al. 1993. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546.

    PubMed  CAS  Google Scholar 

  8. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ. 1993. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542.

    PubMed  CAS  Google Scholar 

  9. Tsuzuki S, Ichiki T, Nakakubo H, Kitami Y, Guo D, Shiari H, Inagami T. 1994. Molecular cloning and expression or the gene encoding human angiotensin II type 2 receptor. Biochem Biophys Res Com 200:1449–1454.

    Article  PubMed  CAS  Google Scholar 

  10. Summers C, Tang W, Zelezna B, Raizada MK. 1991. Angiotensin II receptor subly per one coupled with disctinct signal transduction mechanisms in cultured neurons and astrocyteglia from rat brain. Proc Natl Acad Sci 88:7567–7571.

    Article  Google Scholar 

  11. Bottari SP, Taylor V, King IN, Bogdal Y, Whitebread S, de Gasparo M. 1991. Angiotensin AT2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol 207:157–163.

    Article  PubMed  CAS  Google Scholar 

  12. Gyurko R, Kimura B, Kurian P, Crews FT, Phillips MI. 1992. Angiotensin II receptor subtypes play opposite roles in regulating phosphatidylinositol hydrolysis in rat skin slick. Biochem Biophys Res Commun 186:285–292.

    Article  PubMed  CAS  Google Scholar 

  13. Jaiswal N, Tallant EA, Diz DI, Mahesh CK, Ferrario CM. 1991. Subtype 2 angiotensin receptors mediate prostaglandin synthesis in human astrocytes. Hypertension 17:1115–1120.

    Article  PubMed  CAS  Google Scholar 

  14. Cogan MG, Liu FY, Wong PC, Timmermans PBMWM. 1991. Comparison of inhibitory potency by nonpeptide angiotensin II receptor antagonists PD123177 and DuP753 on proximal nephron and renal transport. J Pharm Exp Therap 259:687–691.

    CAS  Google Scholar 

  15. Regitz-Zagrosek V, Friedel N, Heyman A, Bauer P, Neuß M, Rolfs A, Steffan C, Hildebrand A, Hetzer R, Fleck E. 1995. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation 91:1461–1471.

    Article  PubMed  CAS  Google Scholar 

  16. Rogg H de Gasparo M, Graedel E, Stulz P, Burkart F, Eberhardt M, Erne P. 1996. Angiotensin lireceptor subtypes in human atria and evidence for alterations in patients with cardiac dysfunction. European Heart J 17:1112–1120.

    Article  CAS  Google Scholar 

  17. Sechi LA, Griffin C, Grady EF, Kalinyak JE, Schambelan M. 1992. Characterization of angiotensin receptor subtypes in rat heart. Circ Res 71:1482–1489.

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki J, Matsubarara H, Urakami M, Inada M. 1993. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 73:439–447.

    Article  PubMed  CAS  Google Scholar 

  19. Rogg H, Schmid A, de Gasparo M. 1990. Identification and characterization of angiotensin II receptor subtypes in rabbit ventricular myocardium. Biochem Biophys Res Commun 173:416–422.

    Article  PubMed  CAS  Google Scholar 

  20. Scott A, Chang R, Lotti V, Siegl P. 1992. Cardiac angiotensin receptors: Effects of selective angiotensin II receptor antagonists, DUP 753 and PD121981, in rabbit heart J Pharmacol Exp Ther 261:931–935.

    PubMed  CAS  Google Scholar 

  21. Brink M de Gasparo M, Rogg H, Whitebread S, Bullock G. 1995. Localization of angiotensin II receptor subtypes in the rabbit heart. J Mol Cell Cardiol 27:459–470.

    Article  PubMed  CAS  Google Scholar 

  22. Ishihata A, Endoh M. 1995. Species-related differences in inotropic effects of angiotensin II in mammalian ventricular muscle: Receptors, subtypes and phosphoinositide hydrolysis. Br J Pharm 114:447–453.

    Article  CAS  Google Scholar 

  23. Bastein NR, Ciuffo GM, Saavedra JM, Lambert C. 1996. Angiotensin II receptor expression in the conduction system and arterial duct of neonatal and adult rat hearts. Reg Peptides 63:9–16.

    Article  Google Scholar 

  24. Hunt RA, Ciuffo GM, Saavedra JM, Tucker DC. 1995. Quantification and localization of angiotensin II receptors and angiotensin converting enzyme in the developing rat heart. Cardiovasc Res 29:834–840.

    PubMed  CAS  Google Scholar 

  25. Everett AD, Heller F, Fisher A. 1996. AT1 receptor gene regulation in cardiac myocytes and fibroblasts. J Mol Cell Cardiol 28:1727–1736.

    Article  PubMed  CAS  Google Scholar 

  26. Brink M, Erne P, de Gasparo M, Rogg H, Schmid A, Stulz P, Bullock G. 1996. Localization of angiotensin II receptor subtypes in the human atrium. J Molec Cell Cardiol 28:1789–1799.

    Article  CAS  Google Scholar 

  27. Alexander RW, Brock TA, Gimbrone MA, Rittenhouse SE. 1985. Angiotensin increases inositol triphosphate and calcium in vascular smooth muscle. Hypertension 7:447–451.

    PubMed  CAS  Google Scholar 

  28. Allen IS, Cohen NM, Dhallan RS, Gas ST, Lederer WJ, Rogers TB. 1988. Angiotensin II increaes spontaneous contractile frequency aand stimulated calcium current in cultured neonatal rat heart myocytes: Insights into the underlying biochemical mechanisms. Circ Res 62:524–534.

    Article  PubMed  CAS  Google Scholar 

  29. Rhee SG, Choi KD. 1992. Regulation of inositolphospholipid-specific PLC isozymes (Review). J Biol Chem 267:12393–12396.

    PubMed  CAS  Google Scholar 

  30. Ishihata A, Endoh M. 1993. Pharmacological characteristics of the positive inotropic effect of angiotensin II in the rabbit ventricular myocardium. Br J Pharm 108:999–1005.

    Article  CAS  Google Scholar 

  31. Kojima I, Kauamura N, Shibata H. 1994. Rate of calcium entry attenuates the rapid changes in protein kinase C activity in ang II stimulated adrenal glomerulosa cells. Biochem J 297:523–528.

    PubMed  CAS  Google Scholar 

  32. Lasseque B, Alexander RW, Clark M, Griendling KK. 1991. Angiotensin II-induced phosphatidyl-choline hydrolysis in cultured vascular smooth muscle cells, regulation and localization Biochem J 276:19–25.

    Google Scholar 

  33. Griendling K, Tsuda T, Berk BC, Alexander RW. 1989. Angiotensin II stimulates vascular smooth muscle J Cardiovasc Pharm 14(Suppl 6):S27–S33.

    CAS  Google Scholar 

  34. Sadoshima J, Izumo S. 1993. Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Circ Res 73:424–438.

    Article  PubMed  CAS  Google Scholar 

  35. Anad-Srivastava MD. 1989. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma: Involvement of inhibitory guanine nucleotide regulatory protein. Biochem Pharmacol 38:489–496.

    Article  Google Scholar 

  36. Sunga P, Rabkin SW. 1994. Angiotensin II-induced alteration of cyclic adenosine 3′,5′ monophos-phate generation in the hypertrophic myocardium of the Dahl salt-sensitive rat on a high salt diet. Can J Physiol & Pharm 72:602–612.

    Article  CAS  Google Scholar 

  37. Sunga P, Rabkin SW. 1991. Reversal of angiotensin II effects on the cyclic adenosine 3′,5′ monophosphate response to isoprenaline in cardiac hypertrophy. Cardiovascular Research 25:965–968.

    Article  PubMed  CAS  Google Scholar 

  38. Baker KM, Aceto JA. 1989. Colocalization of avian angiotensin II cardiac receptors: Coupling to mechanical activity and phosphoinositide metabolism. J Mol Cell Cardiol 21:375–382.

    Article  PubMed  CAS  Google Scholar 

  39. Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: Critical role of the AT1 receptor subtype. Circ Res 73:413–423.

    Article  PubMed  CAS  Google Scholar 

  40. Duff JL, Berk BC, Corson MA. 1992. Angiotensin II stimulates the pp44 and pp42 mitogen activated kinase in cultured rat aortic smooth muscle cells. Biochen Bipophys Res Commun 188:257–264.

    Article  CAS  Google Scholar 

  41. Tsuda T, Kawahara Y, Ishide Y, Koide M, Shiu YR, Yohoyaru M. 1992. Angiotensin II stimulates two myelin basic protein microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71:620–630.

    Article  PubMed  CAS  Google Scholar 

  42. Pan J, Fukuda K, Kodoma H, Makino S, Takahashi T, Sano M, Hori S, Ogawa S. 1997. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 81:611–617.

    Article  PubMed  CAS  Google Scholar 

  43. Huckle WR, Procop CA, Herman B, Earp S. 1990. Angiotensin II stimulates protein tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Biol 10:6290–6298.

    PubMed  CAS  Google Scholar 

  44. Force T, Kyriakis JM, Avruch J, Bonventre JV. 1991. Endothelin, vasopressin and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and-independent pathways in glomerular mesangial cells. J Biol Chem 266:6650–6656.

    PubMed  CAS  Google Scholar 

  45. Molloy C, Taylor DS, Weber H. 1993. Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 268:7338–7345.

    PubMed  CAS  Google Scholar 

  46. Kramer H, Cagan RL, Zipursky SL. 1991. Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature 352:207–211.

    Article  PubMed  CAS  Google Scholar 

  47. Abdellatif MM, Neubauer CD, Lederer WJ, Rogers TB. 1991. Angiotensin-induced desensitization of the phosphoinositide pathway in cardiac cells occurs at the level of the receptor. Circ Res 69:800–809.

    Article  PubMed  CAS  Google Scholar 

  48. Lokuta A, Cooper C, Gaa S, Wang H, Rogers T. 1994. Angiotensin II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart. J Biol Chem 269:4832–4838.

    PubMed  CAS  Google Scholar 

  49. Crabos M, Roth M, Hahn AW, Erne P. 1994. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblastsxoupling to signalling systems and gene expression. J Clin Invest 93:2372–2378.

    Article  PubMed  CAS  Google Scholar 

  50. Kem DC, Johnson EIM, Capponi AM, Chardonnens D, Lang U, Blondel B, Koshida H, Vallotton MB. 1991. Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol 261 (Cell Physiol 30):C77–C85.

    PubMed  CAS  Google Scholar 

  51. Feolde E, Vigne P, Freiin C. 1993. Angiotensin II receptor subtypes and biological responses in the rat heart. J Mol Cell Cardiol 25:1359–1367.

    Article  PubMed  CAS  Google Scholar 

  52. Moore A. 1980. Development of angiotensin II receptors. Advances in Experimental Medicine & Biology 130:195–198.

    Article  CAS  Google Scholar 

  53. Baker KM, Aceto JF. 1990. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H61O–H618.

    Google Scholar 

  54. Liang BT, Galper JB. 1988. Differential sensitivity of ao and a1 to ADP-ribosylation by pertussis toxin in the intact cultured embryonic chick ventricular myocyte. Relationship of the role of G proteins in the coupling of muscarinic cholinergic receptors to inhibition of adenylate cyclase activity. Biochem Pharm 37:4549–4555.

    Article  PubMed  CAS  Google Scholar 

  55. Baker KM, Singer HA, Aceto JF. 1989. Angiotensin II receptor-mediated stimulation of cytosolic free calcium and inositol phosphates in chick myocytes. J Pharmacol Exp Ther 251:578–585.

    PubMed  CAS  Google Scholar 

  56. Goutsouliak V, Rabkin SW. 1997. Angiotensin II-induced inositol phosphate generation is mediated through tyrosine kinase pathways in cardiomyocytes. Cellular Signalling 9:505–512.

    Article  PubMed  CAS  Google Scholar 

  57. Goutsouliak V, Rabkin SW. 1998. Comparison of angiotensin II type 1 and type 2 receptor antagonists on angiotensin II-induced IP3 generation in cardiomyocytes. General Pharm 30:367–372.

    Article  CAS  Google Scholar 

  58. Allen IS, Goa ST, Rogers TB. 1988. Changes in expression of a functional Gi protein in cultured rat heart cells. Am J Physiol 255:C51–C59.

    PubMed  CAS  Google Scholar 

  59. Jard S, Cantan B, Jakob KH. 1981. Angiotensin II and α-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem 256:2603–2606.

    PubMed  CAS  Google Scholar 

  60. Edwards RM, Stack EJ. 1993. Angiotensin II inhibits glomerular adenylate cyclase via the angiotensin II receptor subtype (AT,). J Pharm Exp Therap 266:506–510.

    CAS  Google Scholar 

  61. Rabkin SW. 1996. The angiotensin II subtype 2 (AT2) receptor is linked to protein kinase C but not cAMP dependent pathways in the cardiomyocyte. Can J Physiol Pharm 74:125–131.

    Article  CAS  Google Scholar 

  62. Tamm C, Lang U, Vallotton NB. 1990. Effects of ANF on angiotensin II and phorbol ester stimulated protein kinase C and prostaglandin production in cultured aortic smooth muscle cells. Endocrinology 126:658–665.

    Article  PubMed  CAS  Google Scholar 

  63. Sadoshima J-I, Izumo S. 1996. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21ras via tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 15:775–787.

    PubMed  CAS  Google Scholar 

  64. Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM. 1994. Angiotensin II-induced protein tyrosine phosphorylation in neonatal cardiac fibroblasts. J Biol Chem 269:19626–19632.

    PubMed  CAS  Google Scholar 

  65. Rabkin SW, Goutsouliak V, Damne J, Krystal J. 1996. Ang II produces tyrosine phosphorylation of a 120 kDa protein in Dahl S salt rat myocardium. Am J Hyper 9:230–236.

    Article  CAS  Google Scholar 

  66. Saad MJA, Velloso LA, Carvalho CRO. 1995. Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem J 310:741–744.

    PubMed  CAS  Google Scholar 

  67. Marrero MB, Paxton WG, Schieffer B, Ling BN, Bernstein KE. 1996. Angiotensin II signalling events mediated by tyrosine phosphoryaltion. Cell Signal 8:21–26.

    Article  PubMed  CAS  Google Scholar 

  68. Leduc I, Haddad P, Giasson E, Meloche S. 1995. Involvement of a tryosine pathway in the growth-promoting effects of angiotensin II on aortic smooth muscle cells. J Pharm Exp therap 48:582–592.

    CAS  Google Scholar 

  69. Du J, Sperling LS, Marrero MB, Phillips L, Delafontaine P. 1996. G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells:Thrombin-and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor. BBRC 218:934–939.

    PubMed  CAS  Google Scholar 

  70. Tremblay L, Beliveau R. 1994. Protein tyrosine phosphorylation in normal rat tissue. Int J Biochem 26:29–34.

    Article  PubMed  CAS  Google Scholar 

  71. Elberg G, Li J, Leibovitch A, Shechter Y. 1995. Nonreceptor cytosolic protein tyrosine kinases from various rat tissues. BBA 1269:2999–3306.

    Google Scholar 

  72. Murphy TJ, Alexander RW, Friendling KK, Runge MS, Bernstein KE. 1991. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236.

    Article  PubMed  CAS  Google Scholar 

  73. Kai H, Griendling KK, Lassegue B, Ollerenshaw JD, Runge MS, Alexander W. 1994. Angiotensin II agonist-induced phosphroylation of vascular type 1 angiotensin II receptors. Hypertension 24:523–527.

    Article  PubMed  CAS  Google Scholar 

  74. Kapeller R, Cantley LC. 1994. Phosphatidylinositol 3-kinase. Bioessays 16:565–576.

    Article  PubMed  CAS  Google Scholar 

  75. Zvelebil MJ, MacDougall L, Leevers S, Volinia S, Vanhaesbroeck B, Gout I, Panayotou G, Domini J, Stein R, Pages F, Koga H, Salim K, Linacre J, Das P, Panaretou C, Wetzker R, Waterfield M. 1996. Structural and functional diversity of phosphoinositide 3-kinases. Phil Trans Royal Soc London (Biological Sciences) 351:217:223.

    Google Scholar 

  76. Kazlauskas A, Cooper JA. 1990. Phosphorylation of the PDGF receptor β-subunit creates a tight binding site for phosphatidylinositol 3-kinase. EMBO J 9:3279–3286.

    PubMed  CAS  Google Scholar 

  77. Escobedo JA, Kaplan DR, Kavanaugh WM, Turck CW, Williams LT. 1991. A phosphatylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol Cell Biol 11:1125–1132.

    PubMed  CAS  Google Scholar 

  78. Sanchez-Margalet V, Goldfine LD, Vlahos CJ, Sung CK. 1994. Role of phosphatidylinositol 3-kinase in insulin receptor signaling studies with the inhibitor LY294002. BBRC 204:446–452.

    PubMed  CAS  Google Scholar 

  79. Varticovski L, Harrison-Findik D, Keeler ML, Susa M. 1994. Role of PI 3-kinase in mitogenesis. Biochim et Biophys Acta 4:1–11.

    Google Scholar 

  80. Liu X, Marengene LE, Koch CA, Pawson T. 1993. The v-src SH3 domain binds PI 3 kinase. Mol Cell Biology 13:225–232.

    Google Scholar 

  81. Rabkin SW, Goutsouliak V, Kong J. 1997. Ang II activates PI 3 kinase in cardiomyocytes J Hyper 15:891–899.

    Article  CAS  Google Scholar 

  82. Bottari SP, King IN, Rechlin S, Dahlstroem I, Lydon N, de Gasparo M. 1992. The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate quanylate cyclase. Biochem Biophys Res Commun 183:206–211.

    Article  PubMed  CAS  Google Scholar 

  83. Nahmias C, Cazaubon SM, Briend-Sutien MM, Lazard D, Villageoise P, Stromberg AP. 1995. Angiotensin AT2 receptors are functionally coupled to protein tyrosine dephospphorylatase in N1E-115 neuroblastoma cells. Biochem J 306:87–92.

    PubMed  CAS  Google Scholar 

  84. Kohout TA, Rogers TB. 1995. Angiotensin II activates the Na+/HCO3-symport through a phosphoinositide-independent mechanism in cardiac cells J Biol Chem 270:20432–20438.

    Article  PubMed  CAS  Google Scholar 

  85. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation of gene transcription of angiotensin II receptor sunbtypes in myocardial infarction. J Clin Invest 95:46–54.

    Article  PubMed  CAS  Google Scholar 

  86. Ford WR, Clanachan AS, Jugdutt BI. 1996. Opposite effects of angiotensin and receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 94:3087–3089.

    Article  PubMed  CAS  Google Scholar 

  87. Yamada T, Horricki M, Dzau VJ. 1996. Angiotensin II type 2 receptors mediate programmed cell death. Proc Natl Acad Sci 93:156–160.

    Article  PubMed  CAS  Google Scholar 

  88. Kajstrura J, Cigola E, Mahotra A, Li P, Cheng W, Meggi LG, Anversa P. 1997. Angiotensin II induces apotosis in adult ventricular myocytes in vitro. J Molec Cell Cardiol 29:859–870.

    Article  Google Scholar 

  89. Kong JY, Rabkin SW. 1997. Angiotensin II does not induce apoptosis in cardiomyocytes even in the presence of AT1 receptor blockade Clin Invest Med 20:S37.

    Google Scholar 

  90. Nishizuka Y. 1986. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Science 233:305–312.

    Article  PubMed  CAS  Google Scholar 

  91. Chien KR, Knowlton KU, Zhu H, Chien S. 1991. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046.

    PubMed  CAS  Google Scholar 

  92. Miura M, Iwanaga T, Ito KM, Seto M, Sasaki Y, Ito K. 1997. The role of myosin light chain kinase-dependent phosphorylation of light chain in phorbol ester-induced contraction of rabbit aorta. Pflugen Archiv-Eur J Physiol 434:685–693.

    Article  CAS  Google Scholar 

  93. Yuan S, Sunahara FA, Sen AK. 1987. Tumor-promoting phorphol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ Res 61:372–378.

    Article  PubMed  CAS  Google Scholar 

  94. Gwathmey JK, Hajjar RJ. 1990. Effect of protein kinase activation on sarcoplamic reticulum function and apparent myofibrillar Ca2+ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ Res 67:744–752.

    Article  PubMed  CAS  Google Scholar 

  95. Wolf K, Delia Bruna R, Gunther B, Bruckschlegel G, Schunkert H, Riegger GAJ, Kurtz A. 1996. Angiotensin II receptor gene expression in hypertrophied left ventricles of rat hearts. J of Hypertension 14:349–354.

    Article  CAS  Google Scholar 

  96. Fujii N, Tanaka M, Ohnishi J, Yukawa K, Takimoto E, Shimada S, Naruse M, Sugiyama F, Yagami K, Murakami K, Miyazaki H. 1995. Alterations of angiotensin II receptor contents in hypertrophied hearts. Biochem & Biophys Res Commun 212:326–333.

    Article  CAS  Google Scholar 

  97. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. 1994. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-b1 expression. Hypertension 23:587–592.

    Article  PubMed  CAS  Google Scholar 

  98. Urata H, Healy B, Stewart RA, Bunpus FM, Husain A. 1989. Angiotensin II receptors in normal and failing human hearts. J of Clin Endo and Metabolism 69:54–66.

    Article  CAS  Google Scholar 

  99. Nozawa Y, Miyake H, Haruno A, Yamada S, Uchida S, Ohkura T, Kimura R, Suzuki H, Hoshino T. 1996. Down-regulation of angiotensin II receptors in hypertrophied human myocardium. Clin & Exp Pharm and Physiol 23:514–518.

    Article  CAS  Google Scholar 

  100. Schneider MD, Parker TG. 1991. Cardiac growth factors (Review). Progress in Growth Factor Res 3:1–26.

    Article  CAS  Google Scholar 

  101. Lindpainter K, Ganten D. 1991. The cardiac renin-angiotensin system: An appraisal of present experimental and clinical evidence. Circ Res 68:905–921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rabkin, S.W. (1998). Cardiac Angiotensin II Subtype 2 Receptor Signal Transduction Pathways: Embryonic Cardiomyocytes and Human Heart. In: Dhalla, N.S., Zahradka, P., Dixon, I.M.C., Beamish, R.E. (eds) Angiotensin II Receptor Blockade Physiological and Clinical Implications. Progress in Experimental Cardiology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5743-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5743-2_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7631-6

  • Online ISBN: 978-1-4615-5743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics