Advertisement

Effects of Inhibition of Angiotensin-Converting Enzyme on Myocardial and Myocyte Remodeling in Chronic Volume Overload-Induced Cardiac Hypertrophy in the Dog

  • Sanford P. Bishop
  • Louis J. Dell’Italia
Part of the Progress in Experimental Cardiology book series (PREC, volume 2)

Summary

The data from our studies with chronic mitral regurgitation (MR) in the dog demonstrate that the ventricular and myocyte remodeling in this model, characterized by ventricular dilation and myocyte elongation, are not returned toward normal by treatment with the converting enzyme inhibitor, ramipril. However, in spite of this failure to reduce cardiac hypertrophy or to prevent the remodeling associated with this model of chronic volume overload, there was functional improvement in the animals, as determined by the lower left ventricular filling pressures and pulmonary artery pressures in the treated animals compared with the controls. Ramipril also returned myocardial Ang II levels to control level. This suggests that there may have been a regulatory mechanism on contractile function acting through this chemical mediator.

Our results suggest that diastolic wall stress activates the cardiac renin-angiotensin system (RAS) and that angiotensin (Ang) II and angiotensin-converting enzyme (ACE) may play a functional role in the eccentric pattern of hypertrophy observed in the volume overload model of MR in the dog heart. Additional future studies are needed to further characterize the relative roles of ACE and chymase in Ang II formation in this model that is relevantly important to the human heart. MR produces an increase in intracardiac Ang II without the interstitial fibrosis that has been found in pressure overload. This finding is of particular interest because the heart is a target organ for Ang II, a growth factor for myocytes and fibroblasts [1–5], which has also been associated with myocyte necrosis [6]. Thus, the mechanisms by which the RAS may mediate eccentric hypertrophy in the low pressure volume overload of MR is open to question. The beneficial effect of converting enzyme inhibitor on myocardial function in this model of volume overload, but in the absence of morphological improvement, remains speculative but may be related to alterations in the RAS in the cardiac muscle produced by the treatment.

Keywords

Right Ventricular Mitral Regurgitation Cardiac Hypertrophy Volume Overload Pressure Overload 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schelling P, Fischer H, Ganten D. 1991. Angiotensin and cell growth: A link to cardiovascular hypertrophy? (editorial). J Hypertens 9:3–15.PubMedGoogle Scholar
  2. 2.
    Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dilmann WH. 1993. Identification of functionl angiotensin II receptors in rat cardiac fibroblasts. Circulation 88:2849–2861.PubMedCrossRefGoogle Scholar
  3. 3.
    Sadoshima J, Izumo S. 1993. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423.PubMedCrossRefGoogle Scholar
  4. 4.
    Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. 1993. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circulation Research 72:1245–1254.PubMedCrossRefGoogle Scholar
  5. 5.
    Aceto JF, Baker KM. 1990. [Sar1]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806–H813.PubMedGoogle Scholar
  6. 6.
    Tan L, Jalil JE, Pick R, Janicki JS, Weber KT. 1991. Cardiac myocyte necrosis induced by angiotensin II. Circ Res 69:1185–1195.PubMedCrossRefGoogle Scholar
  7. 7.
    Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. New Engl J Med 327:669–677.PubMedCrossRefGoogle Scholar
  8. 8.
    SOLVD Investigators 1991. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. New Engl J Med 327:685–691.Google Scholar
  9. 9.
    Balcells E, Meng QC, Hageman GR, Palmer RW, Durand JN, Dell’Italia LJ. 1996. Angiotensin II formation in dog heart is mediated by different pathways in vivo and in vitro. Am J Physiol 271 (Heart Circ Physiol 40):H417–H421.PubMedGoogle Scholar
  10. 10.
    Yusuf S, Pepine DJ, Garces C, Pouleur H, Salem D, Kostis J, Benedict C, Rousseau M, Bourassa M, Pitt B. 1992. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 340:1173–1178.PubMedCrossRefGoogle Scholar
  11. 11.
    Baker KM, Chernin MI, Wixson SK, Aceto JF. 1990. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259 (Heart Circ Physiol):H324–H332.PubMedGoogle Scholar
  12. 12.
    Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH. 1990. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913–1920.PubMedCrossRefGoogle Scholar
  13. 13.
    Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. 1994. Angiotensin receptor regulates cardiac hypertrophy and transfroming growth factor ß expression. Hypertension 23:587–592.PubMedCrossRefGoogle Scholar
  14. 14.
    Lindpaintner K, Lu W, Niedermajer N, Schieffer B, Just H, Ganten D, Drexler H. 1993. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 24(2): 133–143.CrossRefGoogle Scholar
  15. 15.
    Schunkert H, Jackson B, Tang SS, Schoen FJ, Smits JF, Apstein CS, Lorell BH. 1993. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation 87:1328–1339.PubMedCrossRefGoogle Scholar
  16. 16.
    Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475–482.PubMedCrossRefGoogle Scholar
  17. 17.
    Boer PH, Ruzicka M, Lear W, Harmsen E, Rousenthal J, Leenen FH. 1994. Stretch-mediated activation of cardiac renin gene. Am J Physiol 267 (Heart Circ Physiol 36):H1630–H1636.PubMedGoogle Scholar
  18. 18.
    Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. 1990. Angiotensin II forming pathways in normal and failing human hearts. Circ Res 66:883–890.PubMedCrossRefGoogle Scholar
  19. 19.
    Husain A. 1993. The chymase-angiotensin system in humans. Hypertension 11:1155–1159.Google Scholar
  20. 20.
    Grossman W. 1980. Cardiac hypertrophy: Useful adaptation or pathologic process. Am J Med 69:576–584.PubMedCrossRefGoogle Scholar
  21. 21.
    Grossman W, Jones D, McLaurin LP. 1975. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 58:56–64.CrossRefGoogle Scholar
  22. 22.
    Anversa P, Ricci R, Olivetti G. 1986. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J Am Coll Cardiol 7:1140–1149.PubMedCrossRefGoogle Scholar
  23. 23.
    Smith SH, Bishop SP. 1985. Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J Mol Cell Cardiol 17:1005–1012.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith SH, McCaslin MD, Sreenan C, Bishop SP. 1988. Regional myocyte size in two-kidney, one clip renal hypertension. J Mol Cell Cardiol 20:1035–1042.PubMedCrossRefGoogle Scholar
  25. 25.
    Hamrell BB, Roberts ET, Carkin JL, Delaney CL. 1986. Myocyte morphology of free wall trabeculae in right ventricular pressure overload hypertrophy in rabbits. J Mol Cell Cardiol 18:127–138.PubMedCrossRefGoogle Scholar
  26. 26.
    Weinberg EO, Lee MA, Weigner M, Lindpaintner K, Bishop SP, Benedict CR, Ho KKL, Douglas PS, Chafizadeh E, Lorell BH. 1997. Antiotensin AT, receptor inhibition. Effects on hypertrophie remodeling and ACE expression in rats with pressure-overload hypertrophy due to ascending aortic stenosis. Circulation 95:1592–1600.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu Z, Hilbelink DR, Crockett WB, Gerdes AM. 1991. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas: 1. Developing and established hypertrophy. Circ Res 69:52–58.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu Z, Hilberlink DR, Gerdes AM. 1991. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas: 2. Long-term effects. Circ Res 69:59–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Gerdes AM, Campbell SE, Hilbelink DR. 1988. Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab Invest 59(6):857–861.PubMedGoogle Scholar
  30. 30.
    Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown PP, Schocken DD. 1992. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86:426–430.PubMedCrossRefGoogle Scholar
  31. 31.
    Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA, Jr. 1991. Alterations in myocyte shape and basement membrane attachment with tachycardium-induced heart failure. Circ Res 69:590–600.PubMedCrossRefGoogle Scholar
  32. 32.
    Spinale FG, Zellner JL, Tomita M, Crawford FA, Zile MR. 1991. Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia-induced cardiomyopathy. Circ Res 69:1058–1067.PubMedCrossRefGoogle Scholar
  33. 33.
    Bhat GJ, Abraham ST, Baker KM. 1996. Angiotensin II interferes with interleukin 6-induced Stat3 signaling by a pathway involving mitogen-activated protein kinase kinase 1. Journal of Biological Chemistry 271:22447–22452.PubMedCrossRefGoogle Scholar
  34. 34.
    Carabello BA, Zile MR, Tanaka R, Cooper GI. 1992. Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Physiol (Heart Circ Physiol 32):H1137–H1144.Google Scholar
  35. 35.
    Bishop SP, Meisen LR. 1976. Myocardial necrosis, fibrosis, and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ Res 39:238–245.PubMedCrossRefGoogle Scholar
  36. 36.
    Hittinger L, Shannon RP, Bishop SP, Gelpi RJ, Vatner SF. 1989. Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circ Res 65(4):971–980.PubMedCrossRefGoogle Scholar
  37. 37.
    Pick R, Janicki JS, Weber KT. 1989. Myocardial fibrosis in nonhuman primate with pressure overload hypertrophy. Am J Pathol 135(5):771–782.PubMedGoogle Scholar
  38. 38.
    Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP. 1989. Patterns of myocardial fibrosis. J Mol Cell Cardiol 21(Suppl V):121–131.PubMedCrossRefGoogle Scholar
  39. 39.
    Weber KT, Brilla CG. 1991. Pathological hypertrophy and cardiac interstitium: Fibrosis and the renin-angiotensin-aldosterone system. Circulation 83:1849–1865.PubMedCrossRefGoogle Scholar
  40. 40.
    Cooper G, IV, Tomanek RJ, Ehardt JC, Marcus ML. 1981. Chronic progressive pressure overload of the cat right ventricle. Circ Res 48:488–497.Google Scholar
  41. 41.
    Komamura K, Shannon RP, Ihara T, Shen Y, Mirsky I, Bishop SP, Vatner SF. 1993. Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure. Am J Physiol 265 (Heart Circ Physiol 34):H1119–H1131.PubMedGoogle Scholar
  42. 42.
    Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. 1990. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67(6): 1355–1364.PubMedCrossRefGoogle Scholar
  43. 43.
    Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. 1989. The fibrillar collagen network and myocardial stiffness in the hypertrophied intact rat left ventricle. Circ Res 64:1041–1050.PubMedCrossRefGoogle Scholar
  44. 44.
    Regan CP, Anderson PG, Bishop SP, Berecek KH. 1996. Captopril prevents vascular and fibrotic changes but not cardiac hypertrophy in aortic-banded rats. Am J Physiol (Heart Circ Physiol 271):H906–H913.Google Scholar
  45. 45.
    Legault F, Rouleau JL, Juneau C, Rose C, Rakusan K. 1990. Functional and morphological characteristics of compensated and decompensated cardiac hypertrophy in dogs with chronic infrarenal aorto-caval fistulas. Circ Res 66:846–859.PubMedCrossRefGoogle Scholar
  46. 46.
    Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW. 1990. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 82:1387–1401.PubMedCrossRefGoogle Scholar
  47. 47.
    Marino TA, Kent RL, Uboh CE, Fernandez E, Thompson EW, Cooper G, IV. 1985. Structural analysis of pressure versus volume overload hypertrophy of cat right ventricle. Am J Physiol 249:H371–H379.PubMedGoogle Scholar
  48. 48.
    Iimoto DS, Covell JW, Harper E. 1988. Increase in cross-linking of Type I and Type III coUagens associated with volume-overload hypertrophy. Circ Res 63(2):399–408.PubMedCrossRefGoogle Scholar
  49. 49.
    Dell’Italia LJ, Meng QC, Balcells E, Straeter-Knowlen IM, Hankes GH, Dillon R, Cartee ER, Orr R, Bishop SP, Oparil S, Elton TS. 1995. Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol 269:H2065–H2073.Google Scholar
  50. 50.
    Carabello BA, Nakano K, Corin W, Biederman R, Spann JF. 1989. Left ventricular function in experimental volume overload hypertrophy. Am J Physiol 256 (Heart Circ Physiol 25):H974–H981.PubMedGoogle Scholar
  51. 51.
    Dell’Italia LJ, Blackwell GG, Thorn BT, Pearce DJ, Bishop SP, Pohost GM. 1992. Time-varying wall stress: An index of ventricular vascular coupling. Am J Physiol 262:H597–H605.Google Scholar
  52. 52.
    Sadoshima J, Izumo S. 1993. Mechanotransduction in stretch-induced hypertrophy of cardiac myocytes. Journal of Receptor Research 13:777–794.PubMedGoogle Scholar
  53. 53.
    Booz GW, Baker KW. 1996. Role of type 1 and type 2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension 28:635–640.PubMedCrossRefGoogle Scholar
  54. 54.
    Younes A, Boluyt MO, O’Neill L, Meredith AL, Crow MT, Lakatta EG. 1995. Age-associated increase in rat ventricular ANP gene expression correlates with cardiac hypertrophy. Am J Physiol 269:H1003–1008.PubMedGoogle Scholar
  55. 55.
    Bishop SP, Drummond JL. 1979. Surface morphology and cell size measurement of isolated rat cardiac myocytes. J Mol Cell Cardiol 11:423–433.PubMedCrossRefGoogle Scholar
  56. 56.
    Clubb FJ, Jr, Bell PD, Kriseman JD, Bishop SP. 1987. Myocardial cell growth and blood pressure development in neonatal spontaneously hypertensive rats. Lab Invest 56:189–197.PubMedGoogle Scholar
  57. 57.
    Burns L, Clark KL, Bradley J, Robertson MJ, Clark AJ. 1994. Molecular cloning of the canine angiotensin II receptor. An AT1-like receptor with reduced affinity for DuP753. FEB Letters 343:146–150.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sanford P. Bishop
    • 1
  • Louis J. Dell’Italia
    • 1
  1. 1.Departments of Pathology and MedicineThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations