Advertisement

Role of Cytokines in Septic Cardiomyopathy

  • Ursula Müller-Werdan
  • Heike Schumann
  • Ralph Fuchs
  • Harald Loppnow
  • Christopher Reithmann
  • Susann Koch
  • Ursula Zimny-Arndt
  • Fritjof Schlegel
  • Chang He
  • Dorothea Darmer
  • Peter Jungblut
  • Josef Stadler
  • JüRgen Holtz
  • Karl Werdan
Part of the Progress in Experimental Cardiology book series (PREC, volume 2)

Summary

The interrelations of cytokine and nitric oxide (NO) metabolism with heart function have been best documented for the heart in sepsis. The existence of human septic myocardial depression in intensive care patients was only unequivocally proved in the 1980s by the group of Parrillo, utilizing a nuclear imaging technique. Septic cardiomyopathy is frequently masked by a seemingly normal cardiac output. However, relative to the lowered systemic vascular resistance in sepsis, resulting in a reduced afterload, cardiac outputs and ventricular ejection fractions of septic patients are often not adequately enhanced. Septic cardiomyopathy involves both the right and the left ventricle; global as well as regional contractile disturbances occur and systolic pump as well as diastolic relaxation failure. Septic cardiomyopathy is potentially reversible. In response to volume substitution, the hearts can be considerably enlarged. The disease is not primarily hypoxic in nature, as coronary sinus blood flow is high and as coronary vessels are dilated. Difficult situations may arise, when septic cardiomyopathy develops in patients with pre-existing coronary heart disease. The severity of myocardial depression correlates with a poor prognosis, heart failure accounting for about 10% of fatalities from sepsis and septic shock. Septic cardiomyopathy is prevalent in Gram-positive, Gram-negative, fungal and viral sepsis, and left ventricular stroke work indices are compromised to a similar degree independent of the causative germ, pointing at the relevance of the final mediator pathways as opposed to the specific virulence factors.

The etiology of the disease is multifactorial. Several candidates with potential pathogenetic impact can be addressed: bacterial toxins, cytokines and mediators including nitric oxide, cardiodepressant factors, oxygen reactive species, catecholamines. Using cultures of neonatal rat cardiomyocytes, several “negative inotropic cascades” were identified. Experimentally supported concepts include the endotoxin-induced release of cytokines with cardiodepressant action, primarily tumor necrosis factor a (TNFα) and interleukin-1; induction of inducible nitric oxide synthase (iNOS) in cardiomyocytes was shown for endotoxin and interleukin-1; TNFα has pleiotropic effects including a concentration-dependent iNOS-induction, a decreased synthesis of precursors of the phosphoinositide pathway, interference with the β-adrenoceptor/G-protein/adenylyl cyclase-pathway and a decrease in calcium transient; a cardiodepressant factor (CDF) isolated from blood of patients in septic/cardiogenic shock blocks calcium current into cardiomyocytes.

Keywords

nItnc Oxide Septic Shock Sodium Nitroprusside Myocardial Depression Ventricular Stroke Work Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ibelgaufts H. 1995. Dictionary of cytokines. Weinheim, Germany: VCH Verlagsgesellschaft;.Google Scholar
  2. 2.
    The CONSENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316:1429–1435.CrossRefGoogle Scholar
  3. 3.
    Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Routcau JL, Rutherford J, Wertheimer JH, Hawkins CM, on behalf of the SAVE Investigators. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327:669–677.PubMedCrossRefGoogle Scholar
  4. 4.
    The Acute Ramipril Efficacy Study Investigators. 1993. Effects of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 342:821–828.Google Scholar
  5. 5.
    Mancini GBJ, Henry GC, Macaya C, O’Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Luscher TF, Kubaner MI, Haber HE, Uprichard ACG, Pepine CJ, Pitt B. 1996. Angiotensin converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease: the TREND (trial on reversing endothelial dysfunction) study. Circulation 94:258–265.PubMedCrossRefGoogle Scholar
  6. 6.
    Mombouli J-V, Vanhoutte PM. 1995. Kinins and endothelial control of vascular smooth muscle. Annu Rev Pharmacol Toxicol 35:679–705.PubMedCrossRefGoogle Scholar
  7. 7.
    Kasel M, Faußner A, Pfeifer A, Müller U, Werdan K, Roscher AA. 1996. B2 bradykinin receptors in neonatal rat cardiomyocytes mediating a negative chronotropic and negative inotropic response. Diabetes 45(Suppl l):S44–S50.PubMedGoogle Scholar
  8. 8.
    Shah AM. 1996. Paracrine modulation of heart cell function by endothelial cells. Cardiovascular Research 31:847–867.PubMedGoogle Scholar
  9. 9.
    Wei C-M, Jiang S-W, Lust JA, Daly RC, McGregor CGA. 1996. Genetic expression of endothelial nitric oxide synthase in human atrial myocardium. Mayo Clin Proc 71:346–350.PubMedCrossRefGoogle Scholar
  10. 10.
    Morawietz H, Rohrbach S, Darmer D, Hakim K, Zerkowski HR, Holtz J. 1996. Angiotensin converting enzyme inhibitor treatment upregulates the expression of endothelial nitric oxide synthase in human atrial myocardium. Circulation 94(Suppl I)1–521.Google Scholar
  11. 11.
    Müller-Werdan U, Reithmann C, Werdan K. 1996. Cytokines and the Heart-Molecular mechanisms of Septic Cardiomyopathy. Heidelberg: Springer-Verlag.Google Scholar
  12. 12.
    Kelly RA, Balligand J-L, Smith TW. 1996. Nitric oxide and cardiac function. Circ Res 79:363–380.PubMedCrossRefGoogle Scholar
  13. 13.
    Fink MP, Payen D, eds. 1995. Role of nitric oxide in sepsis and ARDS. Heidelberg: Springer Verlag.Google Scholar
  14. 14.
    de Beider AJ, Radomski MW, Why HJF, Richardson PJ, Bucknall CA, Salas E, Martin JF, Moncada S. 1993. Nitric oxide synthase activities in human myocardium. Lancet 341:84–85.CrossRefGoogle Scholar
  15. 15.
    de Beider AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF. 1995. Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not ischemie or valvular heart disease. Br Heart J 74:426–430.CrossRefGoogle Scholar
  16. 16.
    Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB. 1996. Expression of inducible nitric oxide synthase in human heart failure. Circulation 93:1087–1094.PubMedCrossRefGoogle Scholar
  17. 17.
    Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. 1996. Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 347:1151–1155.PubMedCrossRefGoogle Scholar
  18. 18.
    Thoenes M, Förstermann U, Tracey WR, Bleese NM, Nüssler AK, Scholz H, Stein B. 1996. Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol 28:165–169.PubMedCrossRefGoogle Scholar
  19. 19.
    Wildhirt SM, Dudek RR, Suzuki H, Narayan KS, Winder S, Choe J, Bing RJ. 1995. Expression of nitric oxide synthase isoforms after myocardial infarction in humans. Endothelium 3:209–224.CrossRefGoogle Scholar
  20. 20.
    Lewis NP, Tsao PS, Rickenbacher PR, Xue C, Johns RA, Haywood GA, van der Leyen H, Trindade PT, Cooke JP, Hunt SA, Billingham ME, Valantine HA, Fowler MB. 1996. Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle. Circulation 93:720–729.PubMedCrossRefGoogle Scholar
  21. 21.
    Parker MM, Shelhamer JH, Bacharach SL, Green MW, Natanson C, Frederick TM, Damske BA, Parrillo JE. 1984. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490.PubMedCrossRefGoogle Scholar
  22. 22.
    Werdan K, Müller U, Reithmann C. 1993. “Negative inotropic cascades” in cardiomyocytes triggered by substances relevant to sepsis. In Pathophysiology of shock, sepsis, and organ failure. Ed. G Schlag and H Redl, 787–833. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  23. 23.
    Pilz G, McGinn P, Boekstegers P, Kääb S, Weidenhöfer S, Werdan K. 1994. Pseudomonas sepsis does not cause more severe cardiovascular dysfunction in patients than non-Pseudomonas sepsis. Circ Shock 42:174–182.PubMedGoogle Scholar
  24. 24.
    Parrillo JE. 1989. Septic shock in humans: clinical evaluation, pathogenesis, and therapeutic approach. In Textbook of Critical Care, 2d ed. Ed. WC Shoemaker, S Ayres, A Grenvik, PR Holbrook, WL Thompson, 1006–1024. Philadelphia: Saunders.Google Scholar
  25. 25.
    Vincent J-L, Gris P, Coffernils M, Leon M, Pinsky M, Reuse C, Kahn RJ. 1992. Myocardial depression characterizes the fatal course of septic shock. Surgery 111:660–667.PubMedGoogle Scholar
  26. 26.
    Parrillo JE. 1989. The cardiovascular pathophysiology of sepsis. Ann Rev Med 40:469–485.PubMedCrossRefGoogle Scholar
  27. 27.
    Werdan K, Pilz P. 1996. Supplemental immune globulins in sepsis: a critical appraisal. Clin Exp Immunol 104(Suppl l):83–90.PubMedGoogle Scholar
  28. 28.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee. 1992. Definitions for sepsis and multiple organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874.CrossRefGoogle Scholar
  29. 29.
    Bone RC. 1996. Sir Isaak Newton, sepsis, SIRS, and CARS. Crit Care Med 24:1125–1128.PubMedCrossRefGoogle Scholar
  30. 30.
    Sibbald WJ, Vincent J-L. 1995. Roundtable conference on clinical trials for the treatment of sepsis. Chest 107:522–527.PubMedCrossRefGoogle Scholar
  31. 31.
    Werdan K. 1995. Towards a more causal treatment of septic cardiomyopathy. In Yearbook on intensive care and emergency medicine. Ed. J-L Vincent, 518–538. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  32. 32.
    Menasché P. 1995. The inflammatory response to cardiopulmonary bypass and its impact on postoperative myocardial function. Current Opinion in Cardiology 10:597–604.PubMedCrossRefGoogle Scholar
  33. 33.
    Schulz R, Panas DL, Catena R, Moncada S, Olley PM, Lopaschuk GD. 1995. The role of nitric oxide in cardiac depression induced by interleukin-1β and tumor necrosis factor-α. Br J Pharmacol 114:27–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Natanson C, Eichacker PQ, Hoffman WD, Banks SM, MacVittie TJ, Parrilo JE. 1989. Human recombinant interleukin-1 (IL-1) produced minimal effects on canine cardiovascular (CV) function. Clin Res 37:346A.Google Scholar
  35. 35.
    Rietschel ET, Brade H. 1992. Bacterial endotoxins. Sci Am August 26–33.Google Scholar
  36. 36.
    Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE. 1989. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321:280–287.PubMedCrossRefGoogle Scholar
  37. 37.
    Goyert SM, Ferrero E, Rettig WJ, Yenamandra AK, Obata F, Le Beau MM. 1988. The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 239:497–500.PubMedCrossRefGoogle Scholar
  38. 38.
    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. J Immunol 144:2566–2571.PubMedGoogle Scholar
  39. 39.
    Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ. 1990. Structure and function of lipopolysaccharide-binding protein. Science 249:1429–1431.PubMedCrossRefGoogle Scholar
  40. 40.
    Schumann RR, Rietschel ET, Loppnow H. 1994. The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol 183:279–297.PubMedCrossRefGoogle Scholar
  41. 41.
    Loppnow H, Stelter F, Schönbeck U, Schlüter C, Ernst M, Schütt C, Flad H-D. 1995. Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14. Infect Immun 63:1020–1026.PubMedGoogle Scholar
  42. 42.
    Michie HR, Manogue KR, Spriggs DR, Revhaug A, Dwyer SI, Dinarello CA, Cerami A, Wolff SM, Wilmore DW. 1988. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsumori A. 1996. Cytokines in myocarditis and cardiomyopathies. Current Opinion in Cardiology 11:302–309.PubMedCrossRefGoogle Scholar
  44. 44.
    Blick M, Sherwin SA, Rosenblum M, Gutterman J. 1987. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47:2986–2989.PubMedGoogle Scholar
  45. 45.
    Selby P, Hobbs S, Viner C, Jackson E, Jones A, Newell D, Calvert AH, McElwain T, Fearon K, Humphreys J, Shiga T. 1987. Tumor necrosis factor in man: Clinical and biological observations. Br J Cancer 56:803–808.PubMedCrossRefGoogle Scholar
  46. 46.
    Spriggs DR, Sherman ML, Michi H, Arthur KA, Imamura K, Wilmore D, Frei III E, Kufe DW. 1988. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion; a phase I and pharmacologic study. J Natl Cancer Inst 80:1039–1044.PubMedCrossRefGoogle Scholar
  47. 47.
    Hegewisch S, Weh H-J, Hossfeld DK. 1990. TNF-induced cardiomyopathy. Lancet 335:294–295.PubMedCrossRefGoogle Scholar
  48. 48.
    Natanson C, Eichenholz PW, Danner RL, Eichacker PQ, Hoffman WD, Kuo GC, Banks SM, MacVittie TJ, Parrillo JE. 1989. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169:823–832.PubMedCrossRefGoogle Scholar
  49. 49.
    Eichenholz PW, Eichacker PQ, Horffman WD, Banks SM, Parrillo JE, Danner RL, Natanson C. 1992. Tumor necrosis factor challenges in canines: Patterns of cardiovascular dysfunction. Am J Physiol 263:H668–HH675.PubMedGoogle Scholar
  50. 50.
    Odeh M. 1994. Tumor necrosis factor-α as a myocardial depressant substance. Int J Cardiol 42: 231–238.CrossRefGoogle Scholar
  51. 51.
    Packer M. 1995. Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation 92:1379–1382.PubMedCrossRefGoogle Scholar
  52. 52.
    Vincent J-L, Bakker J, Marecaux G, Schandene J, Kahn RJ, Dupont E. 1992. Administration of anti-TNF antibody improves left ventricular function in septic shock patients—results from a pilot study. Chest 101:810–815.PubMedCrossRefGoogle Scholar
  53. 53.
    Boekstegers P, Weidenhöfer S, Zell R, Pilz G, Holler E, Ertel W, Kapsner T, Redl H, Schlag G, Kaul M, Kempeni J, Stenzel R, Werdan K. 1994. Repeated administration of a F(ab’)2 fragment of an anti-tumor necrosis factor a monoclonal antibody in patients with severe sepsis: effects on the cardiovascular system and cytokine levels. Shock 1:237–245.PubMedCrossRefGoogle Scholar
  54. 54.
    Bazzoni F, Beuder B. 1995. How do tumor necrosis factor receptors work? Journal of Inflammation 45:221–238.PubMedGoogle Scholar
  55. 55.
    Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL. 1995. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493.PubMedCrossRefGoogle Scholar
  56. 56.
    Schulz R, Nava E, Moncada S. 1992. Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575–580.PubMedCrossRefGoogle Scholar
  57. 57.
    Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. 1992. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389.PubMedCrossRefGoogle Scholar
  58. 58.
    Brady AJ, Poole-Wilson PA, Harding SE, Warren JB. 1992. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263:H1963–H1966.PubMedGoogle Scholar
  59. 59.
    Balligand J-L, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, Smith TW. 1993. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91: 2314–2319.PubMedCrossRefGoogle Scholar
  60. 60.
    Yokoyama T, Vaca L, Rosen RD, Durante W, Hazarika P, Mann DL. 1993. Cellular basis for the negative inotropic effects of tumor necrosis factor-α in the adult mammalian heart. J Clin Invest 92:2303–2312.PubMedCrossRefGoogle Scholar
  61. 61.
    Werdan K, Müller-Werdan U, Reithmann C, Boekstegers P, Fuchs R, Kainz I, Stadler J. 1995. Nitric oxide dependent and independent effects of tumor necrosis factor-a on cardiomyocyte beating activity and signal transduction pathways. In Shock, sepsis and organ failure-nitric oxide. Ed. G Schlag and H Redl. Heidelberg: Springer Verlag.Google Scholar
  62. 62.
    Werdan K, Müller-Werdan U. 1996. Elucidating molecular mechanisms of septic cardiomyopathy—the cardiomyocyte model. J Mol Cell Biochem 163/164:291–303.CrossRefGoogle Scholar
  63. 63.
    Müller-Werdan U, Fuchs R, Zimny-Arndt U, Chang He, Jungblut P, Stadler J, Werdan K. 1996. TNFα profoundly depresses contractility of cardiomyocytes, without grossly modifying protein pattern. J Mol Cell Cardiol 28:P–9.Google Scholar
  64. 64.
    Paulus WJ, Vantrimpont PJ, Shah AM. 1994. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in man. Circulation 89:2070–2078.PubMedCrossRefGoogle Scholar
  65. 65.
    Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, Peitzman AB. 1991. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214:621–626.PubMedCrossRefGoogle Scholar
  66. 66.
    Evans T, Carpenter A, Kinderman H, Cohen J. 1993. Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 41:77–81.PubMedGoogle Scholar
  67. 67.
    Müller-Werdan U, Prondzinsky R, Witthaut R, Stache N, Heinroth K, Kuhn C, Schmidt H, Busch I, Werdan K. 1997. Das Herz Bei Sepsis und MODS. Wiener Klinische Wochenschrift 109/10:346–353.Google Scholar
  68. 68.
    Preiser J-C, Lejeune P, Roman A, Carlier E, De Backer D, Leeman M, Kahn RJ, Vincent J-L. 1995. Methylene blue administration in septic shock: A clinical trial. Crit Care Med 23:259–264.PubMedCrossRefGoogle Scholar
  69. 69.
    Weitzberg E, Rudehill A, Modin A, Lundberg JM. 1995. Effect of combined nitric oxide inhalation and NG-nitro-L-arginine infusion in porcine endotoxin shock. Crit Care Med 23:909–918.PubMedCrossRefGoogle Scholar
  70. 70.
    Werdan K, Erdmann E. 1989. Preparation and culture of embryonic and neonatal heart muscle cells: modification of transport activity. Methods in Enzymology 173:634–662.PubMedCrossRefGoogle Scholar
  71. 71.
    Reithmann C, Werdan K. 1994. Tumor necrosis factor a decreases inositol phosphate formation and phosphatidylinositol-bisphosphate (PIP2) synthesis in rat cardiomyocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 349:175–182.CrossRefGoogle Scholar
  72. 72.
    Müller-Werdan U, Klein D, Zander M, Werdan K, Hammer C. 1994. Beating neonatal rat cardiomyocytes as a model to study the role of xenoreactive natural antibodies in xeno-transplantation. Transplantation 58:1403–1409.PubMedGoogle Scholar
  73. 73.
    Reithmann C, Scheininger C, Bulgan T, Werdan K. 1996. Exposure to the n-3 polyunsaturated fatty acid docosahexaenoic acid impairs α1-adrenoceptor-mediated contractile responses and inositol phosphate formation in rat cardiomyocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 254:109–119.Google Scholar
  74. 74.
    Müller-Werdan U, Pfeifer A, Hübner G, Seliger C, Reithmann C, Rupp H, Werdan K. 1997. Partial inhibition of protein synthesis by Pseudomonas exotoxin A deranges catecholamine sensitivity of cultured rat heart myocytes. J Mol Cell Cardiol 29:799–811.PubMedCrossRefGoogle Scholar
  75. 75.
    Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  76. 76.
    Loppnow H, Brade H, Rietschel ET, Flad HD. 1994. Induction of cytokines in mononuclear and vascular cells by endotoxin and other bacterial products. Methods in Enzymology 236:3–10.PubMedCrossRefGoogle Scholar
  77. 77.
    Gillis S, Ferm MM, Ou W, Smith KA. 1978. T-cell growth factor: Parameters for production and a quantitative microassay for activity. J Immunol 120:2027–2032.PubMedGoogle Scholar
  78. 78.
    Klose J. 1975. Protein mapping by combined isoelectric focusing and electrophoresis in mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243.PubMedGoogle Scholar
  79. 79.
    Jungblut P, Scifert R. 1990. Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. J Biochem Biophys Meth 21:47–58.PubMedCrossRefGoogle Scholar
  80. 80.
    Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 227:680–685.PubMedCrossRefGoogle Scholar
  81. 81.
    Jungblut P, Klose J. 1986. Composition and genetic variability of Heparin-Sepharose CL-6B protein fractions obtained from the solubilized proteins of mouse organs. Biochem Genet 24:925–939.PubMedCrossRefGoogle Scholar
  82. 82.
    Chang He, Müller U, Oberthür W, Werdan K. 1992. Application of high-resolution two-dimensional polyacrylamide gel electrophoresis of polypeptides from cultured neonatal rat cardiomyocytes: Regulation of protein synthesis by catecholamines. Electrophoresis 13:748–754.CrossRefGoogle Scholar
  83. 83.
    Chang He, Müller U, Werdan K. 1992. Regulation of protein biosynthesis in neonatal rat cardiomyocytes by adrenoceptor-stimulation: Investigations with high-resolution two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 13:755–756.CrossRefGoogle Scholar
  84. 84.
    Brady AJB, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE. 1993. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265:H176–H182.PubMedGoogle Scholar
  85. 85.
    Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. 1989. Interleukin-1 and tumor necrosis factor inhibit cardiac myocyte adrenergic responsiveness. Proc Natl Acad Sci USA 86:6753–6757.PubMedCrossRefGoogle Scholar
  86. 86.
    Boekstegers P, Kainz I, Giehrl W, Peter W, Werdan K. 1996. Subchronic exposure of cardiomyocytes to low concentrations of tumor necrosis factor a attenuates the positive inotropic response not only to catecholamines but also to cardiac glycosides and high calcium concentrations. Mol Cell Biochem 156:135–143.PubMedCrossRefGoogle Scholar
  87. 87.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. 1996. Tumor necrosis factor a and interleukin-1β are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958.PubMedCrossRefGoogle Scholar
  88. 88.
    Weisensee D, Bereiter-Hahn J, Schoeppe W, Low-Friedrich I. 1993. Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol 15:581–587.PubMedCrossRefGoogle Scholar
  89. 89.
    Song W, Furman BL, Parratt JR. 1994. Attenuation by dexamethasone of endotoxin protection against ischemia-induced ventricular arrhythmias. Br J Pharmacol 113:1083–1084.PubMedCrossRefGoogle Scholar
  90. 90.
    Shindo T, Ikeda U, Ohkawa F, Kawahara Y, Yokoyama M, Shimada K. 1995. Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovascular Research 29:813–819.PubMedGoogle Scholar
  91. 91.
    Reithmann C, Gierschik P, Werdan K, Jakobs KH. 1991. Tumor necrosis factor a up-regulates G and Gβ proteins and adenylyl cyclase responsiveness in rat cardiomyocytes. Eur J Pharmacol—Mol Pharmacol 206:53–60.CrossRefGoogle Scholar
  92. 92.
    Werdan K, Reithmann C, Müller-Werdan U, Pilz G, Boekstegers P, Fuchs R, Kainz I, Fraunberger P, Walli AK, Stadler J. 1996. Impaired cellular signaling of the adenylyl cyclase and the phosphoinositide pathway in septic cardiomyopathy. In Pathophysiology of Heart Failure. Ed, NS Dahlia, PK Singal, N Takeda, RE Beamish, 277–310. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  93. 93.
    Brömme HJ, Holtz J. 1996. Apoptosis in the heart: Why and when? J Mol Cell Biochem 163/164:261–275.CrossRefGoogle Scholar
  94. 94.
    Bone R. 1993. How Gram-positive organisms cause sepsis. J Crit Care 8:51–59.PubMedCrossRefGoogle Scholar
  95. 95.
    Olson RD, Stevens DL, Melish ME. 1989. Direct effects of purified staphylococcal toxic shock syndrome toxin 1 on myocardial function of isolated rabbit atria. Rev Infect Dis 11(Suppl 1): S313–S315.PubMedCrossRefGoogle Scholar
  96. 96.
    Stevens DL, Troyer BE, Merrick DT, Mitten JE, Olsen RD. 1988. Lethal effects and cardiovascular effects of purified alpha-and theta-toxins from Clostridium perfringens. J Infect Dis 157:272–279.PubMedCrossRefGoogle Scholar
  97. 97.
    Iglewski BH, Liu PV, Kabat D. 1977. Mechanism of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun 15:138–144.PubMedGoogle Scholar
  98. 98.
    Hallström S, Koidl B, Müller U, Werdan K, Schlag G. 1991. A cardiodepressant factor isolated from blood blocks Ca2+ current in cardiomyocytes. Am J Physiol 261:H869–H876.Google Scholar
  99. 99.
    Müller-Werdan U, Schumann H, Fuchs R, Reithmann C, Loppnow H, Koch S, Zimny-Arndt U, Chang H, Darmer D, Jungblut P, Stadler J, Holtz J, Werdan K. 1997. Tumor necrosis factor a (TNFα) is cardiodepressant in pathophysiologically relevant concentrations without inducing inducible nitric oxide-(NO)-synthase (iNOS) or triggering serious cytotoxicity. J Mol Cell Cardiol 29:2915–2923.PubMedCrossRefGoogle Scholar
  100. 100.
    Müller-Werdan U, Schumann H, Loppnow H, Fuchs R, Darmer D, Stadler J, Holtz J, Werdan K. 1998. Endotoxin and tumor necrosis factor a extert a similar proinflammatory effect in neonatal rat cardiomyocytes, but have different cardiodepressant profiles. J Mol Cell Cardiol 30:1027–1036.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ursula Müller-Werdan
    • 1
  • Heike Schumann
    • 2
  • Ralph Fuchs
    • 3
  • Harald Loppnow
    • 1
  • Christopher Reithmann
    • 3
  • Susann Koch
    • 1
  • Ursula Zimny-Arndt
    • 5
  • Fritjof Schlegel
    • 1
  • Chang He
    • 4
  • Dorothea Darmer
    • 2
  • Peter Jungblut
    • 5
  • Josef Stadler
    • 6
  • JüRgen Holtz
    • 2
  • Karl Werdan
    • 1
  1. 1.Chair of Cardiac Intensive Care at the Department of Medicine III, Klinikum KröllwitzUniversity of Halle-WittenbergGermany
  2. 2.Institute of PathophysiologyUniversity of Halle-WittenbergGermany
  3. 3.Department of Medicine I and Klinikum GroßhadernUniversity of MunichGermany
  4. 4.Department of Medicine IIKlinikum Großhadem, University of MunichGermany
  5. 5.Max-Planck-Institute of Infection BiologyGermany
  6. 6.Department of SurgeryTechnical University of MunichGermany

Personalised recommendations