Advertisement

Functional Analysis of Tissue Renin-Angiotensin System Using “Gain and Loss of Function” Approaches: In Vivo Test of in Vitro Hypothesis

  • Ryuichi Morishita
  • Motokuni Aoki
  • Hidetsugu Matsushita
  • Shin-Ichiro Hayashi
  • Shigefumi Nakamura
  • Nobuaki Nakano
  • Tadahiko Nishii
  • Kei Yamamoto
  • Naruya Tomita
  • Atsushi Moriguchi
  • Jitsuo Higaki
  • Toshio Ogihara
Part of the Progress in Experimental Cardiology book series (PREC, volume 2)

Summary

The study of the effect of autocrine-paracrine vasoactive modulators (e.g., renin-angiotensin) on VSMC biology is very difficult in vivo because in vivo studies are limited. Recent progress in in vivo gene transfer technologies have provided us with the opportunity to study cellular responses to the manipulation of the individual components (i.e., by overexpression or inhibition). Currently, many researchers have developed many in vivo gene transfer techniques for cardiovascular application, including viral gene transfer and liposomal gene transfer. By using in vivo gene transfer approaches, the roles of the tissue renin-angiotensin system have been identified. Such an approach may increase our understanding of the biology and pathobiology of autocrine-paracrine system. This review has discussed the potential utility of in vivo gene transfer methods.

Keywords

Gene Transfer Blood Pressure Regulation Angiotensinogen Gene Gene Transfer Method Gene Transfer Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morishita R, Gibbons GH, Ellison KE, Lee W, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1994. Evidence for direct local effect of angiotensin in vascular hypertrophy: in vivo gene transfer of angiotensin converting enzyme. J Clin Invest 94:978–984.PubMedCrossRefGoogle Scholar
  2. 2.
    Tomita N, Morishita R, Higaki J, Aoki M, Nakamura Y, Mikami H, Fukamizu A, Murakami K, Kaneda Y, Ogihara T. 1995. Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension 26:131–136.PubMedCrossRefGoogle Scholar
  3. 3.
    Morishita R, Higaki J, Tomita N, Aoki M, Moriguchi A, Tamura K, Murakami K, Kaneda Y, Ogihara T. 1996. Role of transcriptional cis-elements, angiotensinogen gene-activating element, of angiotensinogen gene in blood pressure regulation. Hypertension 27:502–507.PubMedCrossRefGoogle Scholar
  4. 4.
    Morishita R, Higaki J, Aoki M, Hayashi S, Kida I, Kaneda Y, Ogihara T. 1996. Novel strategy of gene therapy in cardiovascular disease with HVJ-liposome method. In Progression of chronic renal diseases, Ed. H Koide Contrib Nephrol 118:254–264.Google Scholar
  5. 5.
    Morishita R, Gibbons GH, Dzau VJ. 1993. Gene therapy as potential treatment for cardiovascular diseases. In Cardiovascular pharmacology And therapeutics. Ed. Singh BN, 51–61. New York: Libingstone Publisher.Google Scholar
  6. 6.
    Cepko CL, Roberts BE, Mulligan RC. 1994. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37:1053.CrossRefGoogle Scholar
  7. 7.
    Kaneda Y, Morishita R, Tomita N. 1995. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. J Mol Med 73:289–297.PubMedCrossRefGoogle Scholar
  8. 8.
    Yonemitsu Y, Kaneda Y, Morishita R, Nakagawa K, Nakashima Y, Sueishi K. 1996. Characterization of in vivo gene transfer into the arterial wall mediated by the Sendai virus (Hemagglutinating Virus of Japan) liposomes: An effective tool for the in vivo study of arterial diseases. Lab Invest 75:313–323.PubMedGoogle Scholar
  9. 9.
    Dzau VJ, Mann MJ, Morishita R, Kaneda Y. 1996. Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci USA 93:11421–11425.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaneda Y, Iwai K, Uchida T. 1989. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 243:375–378.PubMedCrossRefGoogle Scholar
  11. 11.
    Morishita R, Gibbons GH, Ellison KE, Nakajima M, Leyen HVL, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1994. Intimai hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. Journal of Clinical Investigation 93:1458–1464.PubMedCrossRefGoogle Scholar
  12. 12.
    Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. 1994. Pharmacokinetics of antisense oligonucleotides (cyclin B1 and ede 2 kinase) in the vessel wall: Enhanced therapeutic utility for restenosis by HVJ-liposome method. Gene 149:13–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Lim CS, Chapman GD, Gammon RS, Muhlestein JB, Bauman RP, Stack RS, Swain JL. 1991. Direct in vivo gene transfer into the coronary and peripheral vascultures of the intact dog. Circulation 83:2007–2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Mullins JJ, Peters J, Ganten D. 1990. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature 344:541–544.PubMedCrossRefGoogle Scholar
  15. 15.
    Dzau VJ, Gibbons GH, Morishita R, Pratt E. 1994. New perspectives in hypertension research: potentials of vascular biology. Hypertension 23:1132–1140.PubMedCrossRefGoogle Scholar
  16. 16.
    Dzau VJ, Brody T, Ellison KE, Pratt RE, Ingelfinger JR. 1987. Tissue-specific regulation of renin expression in the mouse. Hypertension 9:36–41.Google Scholar
  17. 17.
    Field LJ, McGowan RA, Dickinson DP, Gross KW. 1984. Tissue and gene specificity of mouse renin expression. Hypertension 6:597–603.PubMedCrossRefGoogle Scholar
  18. 18.
    Dzau VJ, Burt DW, Pratt RE. 1988. Molecular biology of the renin angiotensin system. Am J Physiol 255:F563–F573.PubMedGoogle Scholar
  19. 19.
    Samani NJ, Swales JD, Brammar WJ. 1989. A widespread abnormality of renin gene expression in the spontaneously hypertensive rat: Modulation in some tissues with the development of hypertension. Clin Sci 77:629–636.PubMedGoogle Scholar
  20. 20.
    Tomita N, Higaki J, Kaneda Y, Yu H, Morishita R, Mikami H, Ogihara T. 1993. Hypertensive rats produced by in vivo introduction of the human renin gene. Circulation Research 73:898–905.PubMedCrossRefGoogle Scholar
  21. 21.
    Re RN, Fallon JT, Dzau VJ, Quay S, Haber E. 1982. Renin synthesis by canine aortic smooth muscle cells in culture. Life Sci 30:99–106.PubMedCrossRefGoogle Scholar
  22. 22.
    Morishita R, Higaki J, Miyazaki M, Ogihara T. 1992. Possible role of the vascular renin angiotensin system in hypertension and vascular hypertrophy. Hypertension 19:II-62-II-67.Google Scholar
  23. 23.
    Okamura T, Miyazaki M, Inagami T, Toda N. 1986. Vascular renin angiotensin system in two-kidney, one clip hypertensive rats. Hypertension 8:560–565.PubMedCrossRefGoogle Scholar
  24. 24.
    Mendelsohn FAO. 1985. Localization and properties of angiotensin receptors. J Hypertens 3:307–316.PubMedCrossRefGoogle Scholar
  25. 25.
    Rakugi H, Jacob HJ, Krieger JE, Ingelfinger JR, Pratt RE. 1993. Vascular injury induces angiotensinogen gene expression in the media and neointima. Circulation 87:283–290.PubMedCrossRefGoogle Scholar
  26. 26.
    Rakugi H, Kim DK, Krieger JE, Wang DS, Dzau VJ, Pratt RE. 1994. Induction of angiotensin converting enzyme in the neointima after vascular injury: possible role in restenosis. J Clin Invest 93:339–346.PubMedCrossRefGoogle Scholar
  27. 27.
    Nakajima M, Hutchinson H, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ. 1995. The AT2 receptor antagonizes the growth effects of the AT1 receptor: Gain of function study using gene transfer. Proc Natl Acad Sci USA 92:10663–10667.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamada T, Horiuchi M, Dzau VJ. 1996. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160.PubMedCrossRefGoogle Scholar
  29. 29.
    Sawa Y, Suzuki K, Bai HZ, Shirakura R, Morishita R, Kaneda Y, Matsuda H. 1995. Efficiency of in vivo gene transfection into transplanted rat heart by coronary infusion of HVJ-liposome. Circulation 92:II-479-II-482.Google Scholar
  30. 30.
    Aoki M, Morishita R, Higaki J, Moriguchi A, Hayashi S, Matsushita H, Kida I, Tomita N, Sawa Y, Kaneda Y, Ogihara T. 1997. Survival of grafts of genetically modified cardiac myocytes transfected with FITC-labeled oligodeoxynucleotides and ß-galactosidase gene in non-infarcted area, but not myocardial infarcted area. Gene Therapy 4:120–127.PubMedCrossRefGoogle Scholar
  31. 31.
    Aoki M, Morishita R, Higaki J, Moriguchi A, Kida I, Hayashi S, Matsushita H, Kaneda Y, Ogihara T. 1997. In vivo transfer efficiency of antisense oligonucleotides into the myocardium using HVJ-liposome method. Biochemical Biophysics Research Communication 231:540–545.CrossRefGoogle Scholar
  32. 32.
    Aoki M, Morishita R, Muraishi A, Moriguchi A, Sugimoto T, Maeda K, Dzau VJ, Kaneda Y, Higaki J, Ogihara T. 1997. Efficient in vivo gene transfer into heart in rat myocardial infarction model using HVJ (Hemagglutinating Virus of Japan)-liposome method. J Mol Cell Cardiol 29:949–959.PubMedCrossRefGoogle Scholar
  33. 33.
    Lin H, Parmacek MS, Morle G, Boiling S, Leiden JM. 1990. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 82:2217–2221.PubMedCrossRefGoogle Scholar
  34. 34.
    Buttric PM, Kass A, Kitsis RN, Kaplan MR, Lainwand LA. 1992. Behavior of genes directly injected into the rat heart in vivo. Circ Res 70:193–198.CrossRefGoogle Scholar
  35. 35.
    Harsdorf RV, Schott RJ, Shen Y-T, Vatner SF, Mahdavi V, Ginard BN. 1993. Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circ Res 72:688–695.CrossRefGoogle Scholar
  36. 36.
    Gal D, Weir L, Leclerc G, Pickering JG, Hogan J, Isner JM. 1993. Direct myocardial transfection in two animal models evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest 68:18–25.PubMedGoogle Scholar
  37. 37.
    Schneider MD, French BA. 1993. The advent of adenovirus gene therapy for cardiovascular disease. Circulation 88:1937–1942.PubMedCrossRefGoogle Scholar
  38. 38.
    Kirshenbaum LA, MacLellan WR, Mazur W, French BA, Schneider MD. 1993. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J Clin Invest 92:381–387.PubMedCrossRefGoogle Scholar
  39. 39.
    Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finke T. 1993. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 73:1202–1207.PubMedCrossRefGoogle Scholar
  40. 40.
    French BA, Mazur W, Geske RS, Bolli R. 1994. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90:2414–2424.PubMedCrossRefGoogle Scholar
  41. 41.
    Barr E, Carroll JC, Kalynych AM, Tripathy SK, Kozarski K, Wilson JM, Leiden JM. 1994. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Therapy 1:51–58.PubMedGoogle Scholar
  42. 42.
    Xu H, Miller J, Liang BT. 1992. High-efficiency gene transfer into cardiac myocytes. Nucleic Acids Res 20:6425–6426.PubMedCrossRefGoogle Scholar
  43. 43.
    Jeunematire X, Soubrier F, Kotelevetsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvol P. 1992. Molecular basis of human hypertension: role of angiotensinogen. Cell 71:169–180.CrossRefGoogle Scholar
  44. 44.
    Caulfield M, Lavender P, Farrall M, Munroe P, Lawson M, Turner P, Clark A. 1994. Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 330:1629–1633.PubMedCrossRefGoogle Scholar
  45. 45.
    Akhtar S, Juliano RL. 1992. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends in Cell Biol 2:139–144.CrossRefGoogle Scholar
  46. 46.
    Tomita N, Morishita R, Higaki J, Tomita S, Aoki M, Kaneda Y, Ogihara T. 1995. Role of angiotensinogen in blood pressure regulation in normotensive rats: Application of a “loss of function” approach. J Hypertens 13:1767–1774.PubMedCrossRefGoogle Scholar
  47. 47.
    Tamura K, Umehara S, Ishii M, Tanimoto K, Murakami K, Fukamizu A. 1994. Molecular mechanism of transcriptional activation of angiotensinogen gene by proximal promoter. J Clin Invest 93:1370–1379.PubMedCrossRefGoogle Scholar
  48. 48.
    Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakajima M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. 1995. A novel molecular strategy using cis element “decoy” of E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci 92:5855–5859.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamada T, Horiuchi M, Morishita R, Zhang L, Pratt RE, Dzau VJ. 1995. In vivo identification of a negative regulatory element in the mouse renin gene using direct gene transfer. J Clin Invest 96:1230–1237.PubMedCrossRefGoogle Scholar
  50. 50.
    Bielinska A, Shivdasani RA, Zhang L, Nabel GJ. 1990. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science 250:997–1000.PubMedCrossRefGoogle Scholar
  51. 51.
    Sullenger BA, Gallardo HF, Ungers GE, Giboa E. 1990. Overexpression of TAR sequence renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608.PubMedCrossRefGoogle Scholar
  52. 52.
    Yamada K, Moriguchi A, Morishita R, Kaneda Y, Mikami H, Higaki J, Ogihara T. 1996. Importance of transcriptional cis-element of angiotensinogen in the central regulation of blood pressure (abstract). Hypertension 28:521.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ryuichi Morishita
    • 1
  • Motokuni Aoki
    • 1
  • Hidetsugu Matsushita
    • 1
  • Shin-Ichiro Hayashi
    • 1
  • Shigefumi Nakamura
    • 1
  • Nobuaki Nakano
    • 1
  • Tadahiko Nishii
    • 1
  • Kei Yamamoto
    • 1
  • Naruya Tomita
    • 1
  • Atsushi Moriguchi
    • 1
  • Jitsuo Higaki
    • 1
  • Toshio Ogihara
    • 1
  1. 1.Department of Geriatric MedicineOsaka University Medical SchoolJapan

Personalised recommendations