Skip to main content

The Critical Factor for L-Dopa Toxicity on Dopamine Neurons is Glia

  • Chapter
Understanding Glial Cells

Abstract

L-DOPA is toxic for dopamine neurons in culture but its toxicity has not been proven in animals or in patients with Parkinson’s disease. Since most experiments in vitro showing L-DOPA toxicity were performed in neurons cultured in the absence of glia we hypothesized that the discrepancy between the effects of L-DOPA in vivo and in vitro may be related to the presence or absence of glia, respectively. Fetal midbrain neuronal cultures were treated with L-DOPA, 200 μM, in the presence or absence of mesencephalic glia conditioned medium (GCM). In the absence of GCM, L-DOPA greatly reduced the number of tyrosine hydroxylase (TH) immunoreactive neurons and increased the levels of quinones in the medium; GCM prevented these effects of L-DOPA and increased the length and arborization of neurites of the TH immunoreactive cells. In order to characterize the compounds produced by glia and responsible for the protection of dopamine neurons the GCM was fractionated in two samples through filters of molecular size of 10 kD. Both fractions were protective against L-DOPA toxicity, through the fraction <10 kD was more effective than the fraction >10 kD. Candidate neuroprotective agents, including growth factors (BDNF, FGF, GDNF, NGF) and antioxidants (ascorbic, glutathione) were tested and found to provide protection against L-DOPA toxicity. In conclusion, glia prevents L-DOPA toxicity on dopamine neurons through the release of multiple soluble compounds to the extracellular space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee A, M.C. Roach, P. Trcka and R.F. Ludueña (1990) Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin. J. Biol. Chem. 265:1794–1799.

    PubMed  CAS  Google Scholar 

  • Beart P.M. and D. McDonald (1980) Neurochemical studies of the mesolimbic dopaminergic pathway: somatodendritic mechanisms and GABAergic neurons in rat ventral tegmentum. J. Neurochem. 34:1622–1629.

    Article  PubMed  CAS  Google Scholar 

  • Blint J, A.M. Bonnet and Y. Agid (1988) Does L-DOPA aggravate Parkinson’s disease?. Neurology 38: 1410–1416.

    Article  Google Scholar 

  • Blunt S.B., P. Jenner and C.D. Marsden (1993) Suppressive effect of L-DOPA on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine. Mov. Disord. 8: 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Damier P., E.C. Hirsch, F. Javoy-Agid, P. Zhang and Y. Agid (1993) Protective role of glutathione peroxidase against neuronal death in Parkinson’s disease. Neuroscience 52: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Eisenbarth, G.S., F.S. Walsh and N. Niremberg (1979) Monoclonal antibody to a plasma membrane antigen of neurons. P.N.A.S. USA 76:4913–4917.

    Article  CAS  Google Scholar 

  • Engele J., D. Schubert, M.C. Bohn (1991) Conditioned media derived from glial cell lines promote survival and differentiation of dopaminergic neurons in vitro: role of mesencephalic glia. J. Neurosci. Res. 30:359–371.

    Article  PubMed  CAS  Google Scholar 

  • Gall C.M., R. Berschauer, P.J. Isackson (1994) Seizures increase basic fibroblast growth factor messenger mRNA in adult rat forebrain neurons and glia. Mol. Brain Res. 21: 190–205.

    Article  PubMed  CAS  Google Scholar 

  • Hames B.D. (1986) An introduction to Polyacrylamide gel electrophoresis. In: Gel electrophoresis of proteins. (Hames BD and Rickwood D., eds), pp 1–92. Oxford, IRL press.

    Google Scholar 

  • Hefti F., E. Melamed, J. Bhawan and R.J. Wurtman (1981) Long-term administration of L-DOPA does not damage dopaminergic neurons in the mouse. Neurology 31: 1194–1195

    Article  CAS  Google Scholar 

  • Hilwig I. and A. Gropp (1975) pH dependent fluorescence of DNA and RNA in cytologic staining with “33342 Hoechst”. Exp. Cell Res. 91:457–460.

    Article  PubMed  CAS  Google Scholar 

  • Hockfield S. and R.D. McKay (1985). Identification of major cell classes in the developing mammalian nervous system. J. Neuroscience 5:3310–3328.

    CAS  Google Scholar 

  • Hoffer B.J., A. Hofman, K. Bowenkamp, P. Huettl, J. Hudson, D. Martin, L.F.H. Lin, G.A. Gerhardt (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182: 107–111

    Article  PubMed  CAS  Google Scholar 

  • Hyland K. and T. Bottiglieri (1992) Measurerment of total plasma and cerobrospinal fluid homocysteine by fluorescence following high-performance liquid chromatography and precolumn derivatization with O-phthaldialdehyde. J. Chromatogr. 570: 55–62

    Google Scholar 

  • Lesser R.P., S. Fahn, S.R. Snider, L.J. Cote, W.P. Isgreen and R.E. Barret (1979) Analysis of the clinical problems in parkinsonisms and the complications of long-term L-DOPA therapy. Neurology 29: 1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Levison S.W. and K.D. McCarthy (1991) Astroglia in culture. In: G Banker and K Goslin (eds) Culturing Nerve cells, pp 309–336. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Lin L.F.H., D.H. Doherty, J.D. Lile, S. Bektosh, F. Collins (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Makar T.K., M. Nedergaard, A. Preuss, A.S. Gelbard, A.S. Perumal, and A.J. Cooper (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide and enzymes of glutathione metabolism in cultures of chick astrocytes play an important role in antioxidative processes in the brain. J. Neurochem. 62: 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Markham C.H. and S.G. Diamond (1986) Long term follow up of early DOPA treatment in Parkinson’s Disease. Ann. Neurol. 19: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Meister A. (1988) Glutathione metabolism and its selective modification. J. Biol. Chem. 263: 17205–17208.

    PubMed  CAS  Google Scholar 

  • Melamed E. (1986) Initiation of L-DOPA therapy in parkinsonian patiens should be delayed until the advanced stages of the disease. Arch. Neurol. 43: 402–405.

    Article  PubMed  CAS  Google Scholar 

  • Mena M.A., B. Pardo, M.J. Casarejos, S. Fahn, J. G. de Yebenes (1992) Neurotoxicity of L-DOPA on catecholamine-rich neurons. Mov. Disord. 7: 441–445

    Article  Google Scholar 

  • Mena MA, B Pardo, CL Paino, J G de Yebenes (1993) L-DOPA toxicity in foetal rat midbrain neurones in culture: modulation by ascorbic acid. NeuroReport 4: 438–440.

    Article  PubMed  CAS  Google Scholar 

  • Mena M.A., M.J. Casarejos, G. Gimenez-Gallego, G. de Yebenes (1995) Fibroblast growth factors: structure-activity on dopamine neurons in vivo. J. Neural. Transm. 9: 1–14

    Article  CAS  Google Scholar 

  • Mena M.A., M.J. Casarejos, C.L. Paino, J. G. de Yebenes (1996) Glial conditioned medium protects fetal rat midbrain neurons in culture from L-DOPA toxicity. NeuroReport 7: 441–445

    Article  PubMed  CAS  Google Scholar 

  • Muller H.W., U. Junghans, J. Kappler (1995) Astroglial neurotrophic and neurite-promoting factors. Pharmac. Ther. 65: 1–18.

    Article  CAS  Google Scholar 

  • Mytilineou C., S. Han and G. Cohen (1993) Toxic and protective effects of L-DOPA on mesencephalic cell cultures. J. Neurochem. 61: 1470–1478

    Article  PubMed  CAS  Google Scholar 

  • Nagata K., N. Takei, K. Nakajima, H. Saito, S. Kohsaka (1993) Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. J. Neurosci. Res. 34:357–363.

    Article  PubMed  CAS  Google Scholar 

  • Nistico G., M.R. Ciriolo, K. Fiskin, M. Iannone, A. De Martino and G. Rotillo (1992) NGF restores decrease in catalase activity and increase superoxide dismutase and glutatione peroxidase activity in the brain of the aged rats. Free Radic. Biol. Med. 12: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Pardo B., M.A. Mena, M.J. Casarejos, C.L. Paino, J.G. de Yebenes (1995) Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants. Brain Res. 682: 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Perry T.L., V. Wee Yong, M. Ito, J.G. Foulks, R.A. Wall, D.V. Godin and R.M. Clavier (1984). Nigrostriatal dopamine neurons remain undamaged in rats given high doses of L-DOPA and carbidopa chronically. J. Neurochem. 43: 990–993.

    Article  PubMed  CAS  Google Scholar 

  • Quinn N., D. Parker, I. Janota and C.D. Marsden (1986) Preservation of the substantia nigra and locus coeruleus in a patient receiving L-DOPA (2Kg) plus decarboxylase inhibitor over a four-year period. Mov. Disord 1: 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M., E.R. Abney, J. Cohen, R. Lindsay and M. Noble (1983) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides and growth characteristics. J. Neurosci. 3:1289–1300.

    PubMed  CAS  Google Scholar 

  • Raps S.P., J. Lai, I. Hertz, A.J.L. Cooper (1989) Glutahione is present in cultured astrocytes but not in cultured neurons. Brain Res. 493: 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P., E. Sofic, W.D. Rausch, B. Schmidt, G.P. Reynolds, K. Jellinger, M.B.H. Youdim (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52: 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Sagara J., K. Miura and S. Bannai (1993) Maintenance of neuronal glutathione by glial cell. J. Neurochem. 61: 1672–1676.

    Article  PubMed  CAS  Google Scholar 

  • Sagara J., N. Makino, and S. Bannai (1996) Glutathione efflux from cultured astrocytes. J. Neurochem. 66: 1876–1881.

    Article  PubMed  CAS  Google Scholar 

  • Sian J., D.T. Dexter, A.J. Lees, S.E. Daniel, Y. Agid, F. Javoy-Agid, P. Jenner, C.D. Marsden (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 36: 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Siushansian R., S.J. Dixon, and J.X. Wilson (1996) Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes. J. Neurochem. 66: 1227–1223.

    Article  PubMed  CAS  Google Scholar 

  • Slivka A., C. Mytilineou, G. Cohen (1987) Histochemical evaluation of glutahione in brain. Brain Res. 409: 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, I. and M. Schachner (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system. Dev. Biol. 83:311–327.

    Article  PubMed  CAS  Google Scholar 

  • Spranger M., D. Lindholm, C. Bandtlow, R. Heuman, H. Gnahn, M. Naher Noe, H. Thoenen (1990) Regulation of nerve growth factor (NGF) synthesis in rat central nervous system: comparison between the effects of interleukin-1 and various growth factors in astrocyte culture and in vivo. Eur. J. Neurosci. 2: 69–76.

    Article  PubMed  Google Scholar 

  • Takeshima T., K. Shimoda, Y. Sauve, J.W. Commissiong (1994a) Astrocyte-dependent and independent phases of the development and survival of rat embryonic day 14 mesencephalic neurons in culture. Neuroscience 60: 809–823.

    Article  PubMed  CAS  Google Scholar 

  • Takeshima T., J.M. Johnston, J.W. Commissiong (1994b) Oligodendrocyte-type-2 astrocyte (O-2A) progenitors increase the survival of rat mesencephalic, dopaminergic neurons from death induced by serum deprivation. Neurosci. Lett. 166: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Thomas S.A., A.M. Matsumoto, R.D. Palmiter (1995) Noradrenaline is essential for mouse fetal development. Nature 374: 643–646.

    Article  PubMed  CAS  Google Scholar 

  • Uitti R.J. J.E. Ahlskog, D.M. Maraganore, M.D. Muentner, E.J. Atkinson, R.H. Cha, and P.C. O’Brien (1993) L-DOPA therapy and survival in idiopathic Parkinson’s disease: Olmsted County Project. Neurology 43: 1918–1926.

    Article  PubMed  CAS  Google Scholar 

  • Walkinshaw G. and C.M. Waters. (1994) Neurotoxin-induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience. 63: 975–987.

    Article  PubMed  CAS  Google Scholar 

  • Walkinshaw G. and C.M. Waters (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease. J. Clin. Inv. 95: 2458–2464.

    Article  CAS  Google Scholar 

  • Washko P.W., W.O. Hartzell and M. Levine (1989) Ascorbic acid analysis using High-performance liquid chromatography with coulometric electrochemical detection. Anal. Biochem. 181: 276–282.

    Article  PubMed  CAS  Google Scholar 

  • Yurek D.M., K. Steece-Collier, T.J. Collier and J.R. Sladek (1991) Chronic L-DOPA impairs the recovery of dopamine agonist-induced rotational behavior following neural grafting. Exp. Brain Res. 86: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q.Y., C.J. Quaife, and R.D. Palmiter (1995) Target disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374: 640–643.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mena, M.A., Casarejos, M.J., Alcazar, A., Herranz, A., Paíno, C.L., de Yébenes, J.G. (1998). The Critical Factor for L-Dopa Toxicity on Dopamine Neurons is Glia. In: Castellano, B., González, B., Nieto-Sampedro, M. (eds) Understanding Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5737-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5737-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7628-6

  • Online ISBN: 978-1-4615-5737-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics