Skip to main content

Grounding Mundane Inference in Perception

  • Chapter
  • 124 Accesses

Abstract

We describe a uniform technique for representing both sensory data and the attentional state of an agent using a subset of modal logic with indexicals. The resulting representation maps naturally into feed-forward parallel networks or can be implemented on stock hardware using bit-mask instructions. The representation has “circuit-semantics” (Nilsson, 1994, Rosenschein and Kaelbling, 1986), but can efficiently represent propositions containing modals, unary predicates, and functions. We describe an example using Kludge, a vision-based mobile robot programmed to perform simple natural language instructions involving fetching and following tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre, P.E. 1988. The dynamic structure of everyday life. Technical Report 1085, Massachusetts Institute of Technology, Artificial Intelligence Lab.

    Google Scholar 

  • Agre, P.E. and Chapman, D. 1987. Pengi: An implementation of a theory of activity. In Proceedings of the Sixth National Conference on Artificial Intelligence, pp. 268–272.

    Google Scholar 

  • Arkin, R. 1997. Behavior-Based Robotics. MIT Press: Cambridge, MA.

    Google Scholar 

  • Blake, A. and Yuille, A., editors. 1992. Active Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Bonasso, R.P., Firby, J., Gat, E., Kortenkamp, D., Miller, D.P., and Slack, M.G. 1997. Experiences with an architecture for intelligent reactive agents. In H. Hexmoor, I. Horswill, and D. Kortenkamp (eds.), Special issue on software architectures for physical agents, Journal of Theoretical and Experimental AI. Cambridge University Press.

    Google Scholar 

  • Brooks, R.A. 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automoation, 2(1): 14–23.

    Article  Google Scholar 

  • Brooks, R.A. and Connell, J.H. 1986. Asynchronous distributed control system for a mobile robot. In Cambridge Symposium on Optical and Optoelectronic Engineering, SPIE.

    Google Scholar 

  • Brown, C., Coombs, D. and Soong, J. 1992. Real-time smooth pursuit tracking. In A. Blake and A. Yuille, editors, Active Vision. MIT Press: Cambridge, MA., pp. 126–136.

    Google Scholar 

  • Crisman, J.D. 1992. Color region tracking for vehicle guidance. In A. Blake and A. Yuille, editors, Active Vision. MIT Press: Cambridge, MA., chapter 7.

    Google Scholar 

  • Dwork, C., Kanellakis, P., and Mitchell, J.C. 1984. On the sequential nature of unification. Journal of Logic Programming, 1(1):35–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Erol, K., Nau, D.S. and Subrahmanian, V.S. 1995. Complexity, decidability, and undecidability results for domain-independent planning. Artificial Intelligence, 76(1–2):75–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Fahlman, S.E. 1979. NETL: A System for Representing and Using Real-World Knowledge. MIT Press: Cambridge, MA.

    MATH  Google Scholar 

  • Fairley, S.M., Reid, I.D., and Murray, D.W. 1995. Transfer of fixation for an active stereo platform vis affine structure recovery. In Proceedings of the Fifth International Conference on Computer Vision, pp. 1100–1105.

    Google Scholar 

  • Firby, R.J. 1989. Adaptive execution in complex dynamic worlds. YALEU/CSD/RR 672, Computer Science Department, Yale University.

    Google Scholar 

  • Hager, G.D. 1995. Calibration-free visual control using projective invariance. In Proceedings of the Fifth International Conference on Computer Vision, pp. 1009–1015.

    Google Scholar 

  • Hasegawa, T., Nakano, Y.I., and Kato, T. 1997. A collaborative dialog model based on interaction between reactivity and deliberation. In W. L. Johnson, editor, Proceedings of the First International Conference on Autonomous Agents, Marina del Rey, CA USA, ACM SIGART, ACM Press, pp. 83–87.

    Google Scholar 

  • Hexmoor, H., Horswill, I., and Kortenkamp, D. 1997. Software architectures for physical agents. In H. Hexmoor, I. Horswill and D. Kortenkamp, editors, Special issue on software architectures for physical agents, Journal of Theoretical and Experimental AI, Cambridge University Press.

    Google Scholar 

  • Hexmoor, H., Horswill, I., and Kortenkamp, D., editors. 1997. Special issue on software architectures for physical agents, Journal of Theoretical and Experimental AI, Cambridge University Press.

    Google Scholar 

  • Horswill, I. 1994. Collision avoidance by segmentation. In Proceedings of the 1994 IEEE/RSJ Internation Conference on Intelligent Robots and Systems, Munich, Germany, IEEE Press.

    Google Scholar 

  • Horswill, H. 1995. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal.

    Google Scholar 

  • Huttenlocher, D.P., Noh, J.J. and Rucklidge, W.J. 1992. Tracking non-rigid objects in complex scenes. TR 93-1320, Computer Science Department, Cornell University.

    Google Scholar 

  • Inoue, H. 1993. Vision based robot behavior: Tools and testbeds for real world ai research. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambery, France, pp. 767–773.

    Google Scholar 

  • Kaelbling, L.P. 1988. Goals as parallel program spcifications. In Proceedings, AAAI-88, St. Paul, MN, pp. 60–65.

    Google Scholar 

  • Levesque, H.J. and Brachman, R.J. 1985. A fundamental tradeoff in knowledge representation and reasoning (revised edition). In R.J. Brachman and H.J. Levesque, editors, Readings in Knowledge Representation, Morgan Kaufman: Los Altos, CA, pp. 42–70.

    Google Scholar 

  • Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F. and Scher, R.B. 1996. Golog: A logic programming language for dynamic domains. Journal of Logic Programming.

    Google Scholar 

  • Lowe, D. 1992. Robust model-based motion tracking through the integration of search and estimation. International Journal of Computer Vision, 8(2): 113–122.

    Article  Google Scholar 

  • Maes, P. 1989. How to do the right thing. AI Memo 1180, MIT Artificial Intelligence Laboratory.

    Google Scholar 

  • Mataric, M. 1997. Behavior-based control: Examples from navigation, learning, and group behavior. In H. Hexmoor, I. Horswill, and D. Kortenkamp (eds.), Special issue on software architectures for physical agents, Journal of Theoretical and Experimental AI. Cambridge University Press.

    Google Scholar 

  • Mataric, M.J. 1992. Minimizing complexity in controlling a collection of mobile robots. In IEEE International Conference on Robotics and Automation, Nice, France, pp. 830–835.

    Google Scholar 

  • Minsky, M. 1977. Plain talk on neurodevelopmental epistemology. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence, Cambridge, MA, pp. 1083–1092.

    Google Scholar 

  • Minsky, M. 1986. The Society of Mind. Simon and Schuster: New York, NY.

    Google Scholar 

  • Nilsson, N.J. 1994. Teleo-reactive programs for agent control. Journal of Artificial Intelligence Research.

    Google Scholar 

  • Prokopowicz, P.N., Swain, M.J. and Kahn, R.R. 1994. Task and environment-sensitive tracking. In W. Martin, editor, Proceedings of the IAPR/IEEE Workshop on Visual Behaviors, Seattle, pp. 73–78.

    Google Scholar 

  • Rosenschein, S.J. and Kaelbling, L.P. 1986. The synthesis of machines with provable epistemic properties. In J. Halpern, editor, Proc. Conf. on Theoretical Aspects of Reasoning about Knowledge, Morgan Kaufmann, pp. 83–98.

    Google Scholar 

  • Shastri, L. and Ajjanagadde, V. 1993 From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences, 16.

    Google Scholar 

  • Smolensky, P. 1990. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46(1–2): 159–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Ullman, J.D. and Wisdom, J. 1997. A First Course in Database Systems. Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horswill, I.D. (1998). Grounding Mundane Inference in Perception. In: Bekey, G.A. (eds) Autonomous Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5735-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5735-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7627-9

  • Online ISBN: 978-1-4615-5735-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics