Skip to main content

Partial Hybrid Elements for Analysis of Composite Laminates

  • Chapter
  • 342 Accesses

Abstract

A composite structure is usually made of hundreds of orthotropic laminae with different fibre orientations. The finite element analysis for composite structures is more difficult than that for structures made of isotropic materials. Due to the complex nature of composites, there are many different approaches to model them. In general, the finite elements for analysis of composites can be classified into three classes: 3-D solid elements, laminated elements, and multilayer elements [4.1]. They are formulated using two classes of composite structure models[4.2–4.3] as follows:

  1. 1.

    3-D continuum models[4.4–4.6], in which each of the individual layers of a composite structure is treated as a three-dimensional continuum. Due to simplicity and efficiency, a special 3-D model, layer-wise models [4.13–4.16], is often used, in which displacement models are based on piecewise approximations of the response quantities in the thickness direction.

  2. 2.

    Equivalent single-layer plate/shell models[4.7–4.12], in which deformable models are based on global through-the-thickness displacement, strain and stress approximations;

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoa S.V. and W. Feng, ‘Finite Elements for Analysis of Composite Structures’, in Ed., S.V. Hoa, Computer-Aided Design of Polymer-Matrix Composite Structures, Marcel Dekker, Inc., 1995.

    Google Scholar 

  2. A.K. Noor, ‘Mechanics of anisotropic plates and shells-a new look at an old subject’, Computers & Structures, vol. 44, no.3, 499–514(1992).

    Article  Google Scholar 

  3. J.N. Reddy & D.H. Robbins Jr., ‘Theories and computational models for composite laminates’, Appl. Mech. Rev., vol. 47, no. 6, part 1, 147–169(1994).

    Article  Google Scholar 

  4. E.F. Rybicki, ‘Approximate three-dimensional solution for symmetric laminates under in-plane loading’, J. Compo. Mater., vol. 5, p354(1971).

    Article  Google Scholar 

  5. L.B. Lessard, M.M. Shokrieh & A.S. Schmidt, ′3-D stress analysis of composite plates with or without stress concentrations’, Composites Modelling and Processing Science, III, ICCM/9, Ed. Antonio Miravete, Woodhead Publishing Limited, (1993).

    Google Scholar 

  6. R.M. Barker, F.T. Lin and J.R. Dana, ′3-D finite element analysis of laminated composites’, Computers & Structures, vol.2, 1013–1029(1972).

    Article  Google Scholar 

  7. A.K. Noor and W.S. Burton, ‘Assessment of shear deformation theories for multilayered composite plates’, Appl. Mech. Rev., vol. 42, no. 1, 1–9(1989).

    Article  Google Scholar 

  8. E. Reissner and Y. Stavsky, ‘Bending and stretching of certain types of heterogeneous aeroisotropic elastic plates’, J. Appl. Mech. ASME, 28, 402–408(1961).

    Article  Google Scholar 

  9. K. H. Lo, R.M. Christensen and E.M. Wu, ‘A higher-order theory of plate deformation: Part 1, Homogeneous plates; Part 2, Laminated plates’, J. Appl. Mech. ASME, 44, 663–676(1977).

    Article  Google Scholar 

  10. J. N. Reddy, ‘A simple higher-order theory for laminated composite plates’, J. Appl. Mech. ASME, 51, 745–752(1984).

    Article  Google Scholar 

  11. J.N. Reddy, ‘A refined nonlinear theory of plates with transverse shear deformation’, Int. J. Solids Struct., 20, 881–896(1984).

    Article  Google Scholar 

  12. J. M. Whitney and C.T. Sun, ‘A higher order theory for extensional motion of laminated composites’, J. Sound Vib., vol. 30, 85–97(1973).

    Article  Google Scholar 

  13. M. Epstein and H.P. Huttelmaier, ‘A finite element formulation for multilayered and thick plates’, Comp. Struct., 16, 645–650(1983).

    Article  Google Scholar 

  14. R. L. Hinrichsen and A.N. Palazotto, ‘Nonlinear finite element analysis of thick composite plates using a cubic spline function’, AIAA J., 24, 1836–1842(1986).

    Article  Google Scholar 

  15. A. Muc, ‘Computational models and variational formulations for laminated composite structures’, Composites Modelling and Processing Science, ICCM/9, vol. III, ed., Antonio Miravete, University of Zaragoza, Woodhead Publishing Limited (1993).

    Google Scholar 

  16. D. H. Robbins, Jr. and J.N. Reddy, ‘Modelling of thick composites using a layer-wise laminate theory’, Int. J. Numer. Methods Eng., vol.36, 655–677(1993).

    Article  Google Scholar 

  17. S. V. Hoa and W. Feng, ‘Finite element method for composites’, Composites ′96 and Oriented Polymers Symposium, Montreal, Canada (1996).

    Google Scholar 

  18. S. V. Hoa and W. Feng, ‘Development of hybrid finite elements for stress analysis of composite structures’, the 3rd International Conf. on Fracture and Strength of Solids, Hong Kong, China (1997).

    Google Scholar 

  19. Q. Huang, ‘Three Dimensional Composite Finite Element for Stress Analysis of Anisotropic Laminate Structures’, Ph. D. Dissertation, Concordia University, Montreal, Canada (1989).

    Google Scholar 

  20. J. Han, ‘Three dimensional multilayer composite finite element for stress analysis of composite laminates’, Ph.D. Dissertation, Concordia University, Montreal, Canada, (1994).

    Google Scholar 

  21. W. Feng and S.V. Hoa, ‘A 3-D partial hybrid laminated element for analysis of thick laminates’, Third Int. Conf. on Composites Engineering, New Orleans, USA(1996).

    Google Scholar 

  22. S. Ahmad, B. M. Irons and O.C. Zienkiewicz, ‘Analysis of thick and thin shell structures by curved finite elements’, Int. J. Numer. Methods Eng., vo. 2, 419–451(1970).

    Article  Google Scholar 

  23. W. C. Chao and J. N. Reddy, ‘Analysis of laminated composite shell using a degenerated 3-D element’, Int. J. Numer. Methods Eng., vo. 20, 1991–2007(1984).

    Article  Google Scholar 

  24. J. Blocki, ‘A high-order linear theory for isotropic plates — I. theoretical considerations’, Int. J. Solid Structures, vol. 29, no. 7 825–836(1992).

    Article  Google Scholar 

  25. W. Feng and S. V. Hoa, ‘A degenerated plate/shell element with assumed partial stress field for the analysis of laminated composites’, 4th International Conf. on Computer Aided Design in Composite Material Technology, Southampton, UK (1994).

    Google Scholar 

  26. W. Feng and S.V. Hoa, ‘A partial hybrid degenerated plate/shell element for the analysis of laminated composites’, Int. J. Numer. Methods Eng., vol. 39, 3625–3639(1996).

    Article  Google Scholar 

  27. A. K. Noor, “Global-local methodologies and their application to nonlinear analysis”, Finite Elements in Analysis and Design, vol. 2, 333–346(1986).

    Article  Google Scholar 

  28. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, N.J., 1982.

    Google Scholar 

  29. K. S. Surana, “Geometrically nonlinear formulation for the three dimensional solid-shell transition finite elements”, Comp. Struct., vol. 15, 549–566(1982).

    Article  Google Scholar 

  30. C. L. Liao, J.N. Reddy and S.P. Engelstad’ “A solid-shell transition element for geometrically nonlinear analysis of laminated composite structures”, Int. J. Numer. Methods in Eng., vol. 26, 1843–1854(1988).

    Article  Google Scholar 

  31. W. Feng and S.V. Hoa, ′3-D transition element formulation for the global-local analysis of laminated structures’, Int. Conf. on Design and Manufacturing Using Composites, Montreal, Canada (1994).

    Google Scholar 

  32. S.V. Hoa and W. Feng, ‘A global/local model for analysis of composites’, 10th International Conf. on Composite Materials, Whistler, Canada (1995).

    Google Scholar 

  33. S. V. Hoa and W. Feng, ‘Global/local approach using hybrid elements for composites’, 5th International Conf. on Computer Aided Design in Composite Material Technology, Udine, Italy (1996).

    Google Scholar 

  34. S. V. Hoa and W. Feng, ‘A global/local model using partial hybrid elements’, XIXth International Conf. of Theoretical and Applied Mechanics, Kyoto, Japan (1996).

    Google Scholar 

  35. S.V. Hoa and W. Feng, ‘Application of a global/local finite element model to composite laminates’, Science and Engineering of Composite Materials, vol. 5, 151–168(1996).

    Article  Google Scholar 

  36. W. Feng and S. V. Hoa, ‘Partial hybrid finite elements for composite laminates’, Finite Elements in Analysis and Design, (in press).

    Google Scholar 

  37. K. J. Han and P.L. Gould, “Line node and transitional shell element for rotational shells”, Int. J. Numer. Methods in Eng., vol. 18, 879–895(1982).

    Article  Google Scholar 

  38. O. C. Zienkiewicz, The Finite Element Method, 3rd eds, McGraw-Hill, New York, 1977.

    Google Scholar 

  39. H. Kardestuncer and D. H. Norrie, Finite Element Handbook, McGraw-Hill, 1987.

    Google Scholar 

  40. J.-H. Han and S.V. Hoa, ‘A three-dimensional multilayer composite finite element for stress analysis of composite laminates’, Int. J. Numer. Methods Engrg., vol.36, 3903–3914(1993).

    Article  Google Scholar 

  41. W. Feng and S.V. Hoa, ‘A multilayer element with partial assumed stress field for analysis of laminated structures’, The 16th Canadian Congress of Applied Mechanics CANCAM 97, Quebec, Canada (1997).

    Google Scholar 

  42. R.L. Spilker, ‘A hybrid stress finite element formulation for thick multilayer laminates’, Computers & Structures, vol. 11, 507–514 (1980).

    Article  Google Scholar 

  43. R. L. Spilker, ‘Hybrid-stress eight-node elements for thin and thick multilayer laminated plates’, Int. J. Numer. Methods Eng., vol. 18, 801–828 (1982).

    Article  Google Scholar 

  44. G. Prathap, The Finite Element Method in Structural Machanics, Kluwer Academic Publishers, Netherlands, 1993.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Hoa, S., Feng, W. (1998). Partial Hybrid Elements for Analysis of Composite Laminates. In: Hybrid Finite Element Method for Stress Analysis of Laminated Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5733-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5733-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8136-5

  • Online ISBN: 978-1-4615-5733-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics