Advertisement

Insulin signal transduction through protein kinase cascades

  • Joseph Avruch
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 24)

Abstract

This review summarizes the evolution of ideas concerning insulin signal transduction, the current information on protein ser/thr kinase cascades as signalling intermediates, and their status as participants in insulin regulation of energy metabolism. Best characterized is the Ras-MAPK pathway, whose input is crucial to cell fate decisions, but relatively dispensable in metabolic regulation. By contrast the effectors downstream of PI-3 kinase, although less well elucidated, include elements indispensable for the insulin regulation of glucose transport, glycogen and cAMP metabolism. Considerable information has accrued on PKB/cAkt, a protein kinase that interacts directly with Ptd Ins 3′OH phosphorylated lipids, as well as some of the elements further downstream, such as glycogen synthase kinase-3 and the p70 S6 kinase. Finally, some information implicates other erk pathways (e.g. such as the SAPK/JNK pathway) and Nck/cdc42-regulated PAKs (homologs of the yeast Ste 20) as participants in the cellular response to insulin. Thus insulin recruits a broad array of protein (ser/thr) kinases in its target cells to effectuate its characteristic anabolic and anticatabolic programs. (Mol Cell Biochem 182: 31-48, 1998)

Key words

insulin action protein serine/threonine kinase Ras-Raf MAP kinase ribosomal S6 protein kinase (RSKs) phosphatidyl inositol-3 kinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cahill GF, Steiner DF (eds).: Endocrinology 1 Handbook of Physiology. American Physiological Society, 1972Google Scholar
  2. 2.
    White MW, Kahn CR: The insulin signalling system. J Biol Chem 269: 1–4, 1994PubMedGoogle Scholar
  3. 3.
    Avruch J: Small GTPases and (serine/threonine) protein kinase cascades in insulin signal transduction. In: D LeRoith, J Olefsky, S Taylor (eds). Diabetes Mellitus: A Fundamental and Clinical Text. J.P. Lippincott Co., PA, USA, 1996Google Scholar
  4. 4.
    Bliss R: The discovery of insulin. University of Chicago Press, 1982Google Scholar
  5. 5.
    Larner J: Insulin-signalling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes 37: 262–275, 1988PubMedGoogle Scholar
  6. 6.
    Cuatrecasas P: Interaction of insulin with the cell membrane: The primary action of insulin. Proc Natl Acad Sci 63: 450–457, 1969PubMedCrossRefGoogle Scholar
  7. 7.
    Robison GA, Butcher RW, Sutherland EW: Cyclic AMP, Academic Press, New York, 1971, pp 1–23Google Scholar
  8. 8.
    Krebs EG: Protein kinases. Curr Top Cell Reg 5: 99–133, 1972Google Scholar
  9. 9.
    Butcher RW, Sneyd S, Park CR, Sutherland EW: Effect of insulin on adenosine 3′ 5′ monophosphate in raf epidydimal fat pads. J Biol Chem 242: 1651–1656, 1996Google Scholar
  10. 10.
    Ullrich A, Schlessinger J: Signal transduction by receptors with tyr kinase activity. Cell 61: 203–206, 1990PubMedCrossRefGoogle Scholar
  11. 11.
    Fantl WJ, Johnson DE, Williams LT: Signalling by receptor tyrosine kinases. Ann Rev Biochem 62: 453–481, 1993PubMedCrossRefGoogle Scholar
  12. 12.
    Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: Elements that control interactions of cytoplasmic signalling proteins. Science 252: 668–674, 1991PubMedCrossRefGoogle Scholar
  13. 13.
    Kavanaugh WM, Williams LT: An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266: 18627–18655, 1994CrossRefGoogle Scholar
  14. 14.
    Bork P, Margolis B: A phosphotyrosine interaction domain Cell. 80: 693–694, 1995PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuda M, Mayer BJ, Fukui Y, Hanafusa H: Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248(4962): 1537–1539, 1990PubMedCrossRefGoogle Scholar
  16. 16.
    Tornqvist HE, Avruch J: Relationship of site-specific β subunit tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) kinase activity. J Biol Chem 263: 4593–4601, 1988PubMedGoogle Scholar
  17. 17.
    Avruch J, Nemenoff RA, Pierce M, Kwok YC, Blackshear PJ: Protein phosphorylations as a mode of insulin action. In: MP Czech (ed). Molecular Basis for Insulin Action. Plenum Press, New York, 1985, pp 263–296CrossRefGoogle Scholar
  18. 18.
    Kyriakis JM, Avruch J: S6 kinases and MAP kinases: Sequential intermediates in insulin/mitogen-activated protein kinase cascades. In: JR Woodgett (ed). Protein Kinases: Frontiers in Molecular Biology. Oxford University Press, Oxford, 1994, pp 85–148Google Scholar
  19. 19.
    Avruch J, Zhang XF, Kyriakis JM: Raf meets Ras: Closing a frontier in signal transduction. TIBS 19: 274–283, 1994Google Scholar
  20. 20.
    Lowy DR, Willumsen BM: Function and regulation of Ras. Ann Rev Biochem 62: 851–891, 1993PubMedCrossRefGoogle Scholar
  21. 21.
    Avruch J, Kyriakis JM, Zhang XF: Raf-1 kinase. In: B Draznin, D Leroith (eds). Molecular Biology of Diabetes. Humana Press Inc., New Jersey, USA, 1994, pp 179–207Google Scholar
  22. 22.
    Ahn NG, Seger R, Krebs EC: The mitogen-activated protein kinase activator. Curr Opin Cell Biol 4: 992–999, 1992PubMedCrossRefGoogle Scholar
  23. 23.
    Cobb MH, Goldsmith EJ: How MAP kinases are regulated. J Biol Chem 270: 14843–14846, 1995PubMedCrossRefGoogle Scholar
  24. 24.
    Denton RM, Tavare JM: Does mitogen-activated-protein kinase have a role in insulin action? The cases for and against. Eur J Biochem 227: 597–611, 1995PubMedCrossRefGoogle Scholar
  25. 25.
    Valencia A, Chardin P, Wittinghofer A, Sander C: The Ras protein family: Evolutionary tree and role of conserved amino acids. Biochem 30: 4637–4648, 1991CrossRefGoogle Scholar
  26. 26.
    Zhang FL, Casey PJ: Protein prenylation: Molecular mechanisms and functional consequences. Ann Rev Biochem 65: 241–269, 1996PubMedCrossRefGoogle Scholar
  27. 27.
    Schlessinger J: How receptor tyrosine kinases activate Ras. TIBS 18: 273–275, 1993PubMedGoogle Scholar
  28. 28.
    Boguski MS, McCormick F: Proteins regulating Ras and its relatives. Nature 366: 643–654, 1993PubMedCrossRefGoogle Scholar
  29. 29.
    Marshall MS: The effector interactions of p21Ras. TIBS 18: 250–254, 1993PubMedGoogle Scholar
  30. 30.
    Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J: Normal and oncogenic p21Ras binds to the amino-terminal regulatory domain of c-Raf-1. Nature 364: 308–313, 1993PubMedCrossRefGoogle Scholar
  31. 31.
    Satoh T, Nakafuku M, Kaziro Y: Function of Ras as a molecular switch in signal transduction: J Biol Chem 267: 24149–24152, 1992PubMedGoogle Scholar
  32. 32.
    Marshall CJ: Ras effectors. Curr Opin Cell Biol 8: 197–204, 1996PubMedCrossRefGoogle Scholar
  33. 33.
    Rapp UR, Heidecker C, Huleihel M et al.: Raf family serine/threonine protein kinases in mitogen signal transduction. Cold Spring Harbor, Symp Quant Biol 53: 173–184, 1988CrossRefGoogle Scholar
  34. 34.
    Chuang E, Barnard D, Hettich L, Zhang XF, Avruch J, Marshall MS: Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Mol Cell Biol 14: 5318–5325, 1994PubMedGoogle Scholar
  35. 35.
    Barnard D, Diaz B, Hettich L, Chuang E, Zhang XF, Avruch J, Marshall M: Identification of the sites of interaction between c-Raf-1 and Ras-GTP. Oncogene 10: 1283–1290, 1995PubMedGoogle Scholar
  36. 36.
    Herrmann C, Martin GA, Wittinghoefer A: Quantitative analysis of the complex between p21Ras and the Ras-binding domain of the human raf-1 protein kinase. J Cell Biol 272: 2901–2905, 1995Google Scholar
  37. 37.
    Hu CD, Kariya K, Tamada M, Akasaka K, Shirouzu M, Yokoyama S, Kataoka T: Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J Biol Chem 270: 30274–30277, 1995PubMedCrossRefGoogle Scholar
  38. 38.
    Luo Z, Diaz B, Marshall MS, Avruch J: An intact raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent raf activation in situ. Mol Cell Biol 17: 46–53, 1997PubMedGoogle Scholar
  39. 39.
    Leevers SJ, Paterson HF, Marshall CJ: Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369: 411–414, 1994PubMedCrossRefGoogle Scholar
  40. 40.
    Stokoe D, Macdonald SC, Cadwallader K, Symons M, Hancock JF: Activation of Raf as a result of recruitment to the plasma. Science 264: 1463–1467, 1994PubMedCrossRefGoogle Scholar
  41. 41.
    Mineo C, Anderson RG, White M: Physical association with Ras enhances activation of membrane-bound Raf (Raf CAAX). J Biol Chem 272: 10345–10348, 1997PubMedCrossRefGoogle Scholar
  42. 42.
    Luo Z, Zhang X-f, Rapp U, Avruch J: Identification of the 14.3.3 zeta domains important for self association and Raf binding. J Biol Chem 270: 23681–23687, 1995Google Scholar
  43. 43.
    Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT: Activation of Raf-1 by 14-3-3 proteins. Nature 371: 612–614, 1994PubMedCrossRefGoogle Scholar
  44. 44.
    Muslin AJ, Tanner JW, Allen PM, Shaw AS: Interaction of 14-3-3 with signalling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897, 1996PubMedCrossRefGoogle Scholar
  45. 45.
    Morrison DK, Heidecker C, Rapp UR, Copeland TD: Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem 268: 17309–17316, 1993PubMedGoogle Scholar
  46. 46.
    Luo Z, Tzivion C, Belshaw PJ, Marshall M, Avruch J: Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383: 181–185, 1996PubMedCrossRefGoogle Scholar
  47. 47.
    Farrar MA, Alberol-Ila, Perlmutter RM: Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383: 178–181, 1996PubMedCrossRefGoogle Scholar
  48. 48.
    Kornfeld K, Horn DB, Horvitz HR: The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signalling in C. elegans Cell 83: 903–913, 1995PubMedCrossRefGoogle Scholar
  49. 49.
    Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin CM: KSR, a novel protein kinase required for RAS signal transduction. Cell 83: 879–888, 1995PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McCinley M, Chan-Hui PY, Lichenstein H, Kolesnick R: Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89: 63–72, 1997PubMedCrossRefGoogle Scholar
  51. 51.
    Kolch W, Heidecker G, Kochs G: Protein kinase Ca activates RAF-1 by direct phosphorylation. Nature 364: 249–252, 1993PubMedCrossRefGoogle Scholar
  52. 52.
    Marais R, Light Y, Paterson HF, Marshall CJ: Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14: 3136–3145, 1995PubMedGoogle Scholar
  53. 53.
    Kyriakis JM, Force TL, Rapp UR, Bonventre JV, Avruch J: Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase. J Biol Chem 268: 16009–16019, 1993PubMedGoogle Scholar
  54. 54.
    Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TJ: Inhibition of the EGF-activated MAP kinase signalling pathway by adenosine S′, 5′-monophosphate. Science 262: 1065–1069, 1993PubMedCrossRefGoogle Scholar
  55. 55.
    Altschuler DL, Peterson SN, Ostrowski MC, Lapetina EG: Cyclic AMP-dependent activation of Raplb. J Cell Biol 270: 10373–10376, 1995Google Scholar
  56. 56.
    Cook SJ, Rubinfeld B, Albert I, McCormick F: RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts: EMBO J 12: 3475–3485, 1993PubMedGoogle Scholar
  57. 57.
    Vossler NM, Yao H, York RD, Pan MC, Rim CS, Stork PJ: cAMP activates MAP kinase and Elk-1 through a B-Raf-and Rap1-dependent pathway. Cell 89: 73–82, 1997PubMedCrossRefGoogle Scholar
  58. 58.
    Yamamori B, Kuroda S, Shimizu K, Fukui K, Ohtsuka T, Takai Y: Purification of a Ras-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins. J Biol Chem 270: 11723–11726, 1995PubMedCrossRefGoogle Scholar
  59. 59.
    Okada T, Masuda T, Shinkai M, Kariya K, Kataoka T: Post-translational modification of H-Ras is required for activation of, but not for association with, B-Raf. J Biol Chem 271: 4671–4678, 1996PubMedCrossRefGoogle Scholar
  60. 60.
    Kyriakis JM, App H, Zhang X-F, Banerjee P, Brautigan DL, Rapp UR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358: 417–421, 1992PubMedCrossRefGoogle Scholar
  61. 61.
    Galaktino K, Jessus C, Beach D: Raf-1 interaction with Cdc25 Phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Devel 9: 1046–1052, 1995CrossRefGoogle Scholar
  62. 62.
    Posada J, Yew N, Ahn NG, Vandewoude CF, Cooper JA: Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol Cell Biol: 132546–132553, 1993Google Scholar
  63. 63.
    Lange-Carter CA, Pleiman CM, Cardner AM, Blumer KJ, Johnson CL: A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319, 1993PubMedCrossRefGoogle Scholar
  64. 64.
    Sturgill TW, Ray LB, Erikson E, Mailer JL: Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334: 715–718, 1988PubMedCrossRefGoogle Scholar
  65. 65.
    Waskiewicz AJ, Flynn A, Proud CC, Cooper JA: Mitogen-activated protein kinases activate the serine/threonine kinases Mnkl and Mnk2. EMBO J 16: 1909–1929, 1997PubMedCrossRefGoogle Scholar
  66. 66.
    Mukhopadhyay NK, Price DJ, Kyriakis JM, Pelech S. Sanghera J, Avruch J: An array of insulin-activated, proline-directed (Ser/Thr) protein kinases phosphorylate the p70 S6 kinase. J Biol Chem 267: 3325–3335, 1992PubMedGoogle Scholar
  67. 67.
    Hsiao KM, Chou SY, Shih SJ, Ferrell JE Jr: Evidence that inactive p42 mitogen-activated protein kinase and inactive Rsk exist as a heterodimer in vivo. Proc Natl Acad Sci 91: 5480–5484, 1994PubMedCrossRefGoogle Scholar
  68. 68.
    Dai T, Rubie E, Franklin CC, Kraft A, Gillespie DA, Avruch J, Kyriakis JM, Woodgett JR: Stress-activated protein kinases bind directly to the delta domain of c-jun in resting cells: Implications for repression of c-jun function. Oncogene 10: 849–855, 1995PubMedGoogle Scholar
  69. 69.
    Kallunki T, Deng T, Hibi M, Karin M: c-jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87: 929–939, 1996PubMedCrossRefGoogle Scholar
  70. 70.
    Erikson E, Mailer JL: Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J Biol Chem 261: 350–355, 1986PubMedGoogle Scholar
  71. 71.
    Alcorta DA, Crews CM, Sweet LJ, Bankston L, Jones SW, Erikson RL: Sequence and expression of chicken and mouse rsk: Homologs of Xenopus laevis ribosomal S6 kinase. Mol Cell Biol 9: 3850–3859, 1989PubMedGoogle Scholar
  72. 72.
    Zhao Y, Bjorbaek C, Weremowicz S, Morton CC, Moller DE: RSK3 encodes a novel pp90rsk isoform with a unique N-terrmnal sequence: Growth factor-stimulated kinase function and nuclear translocation. Mol Cell Biol 15: 4353–41363, 1995PubMedGoogle Scholar
  73. 73.
    Sutherland C, Campbell DG, Cohen P: Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2; identification of two threonines phosphorylated during activation by MAP kinases. Eur JBiochem 212: 581–588, 1993CrossRefGoogle Scholar
  74. 78.
    Price DJ, Grove, JR, Calvo V, Avruch J, Bierer BE: Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257: 973–977, 1992PubMedCrossRefGoogle Scholar
  75. 79.
    Erikson E, Mailer JL: Substrate specificity of ribosomal protein S6 kinase H from Xenopus eggs. Second Mess and Phosphoprotein 12: 135–143, 1988Google Scholar
  76. 80.
    Blenis J: Signal transduction via the MAP kinases: Proceed at your own risk. Proc Natl Acad Sci USA 90: 5889–5992, 1993PubMedCrossRefGoogle Scholar
  77. 81.
    Dent P, Lavoinne A, Nakielny S, Caudwell FB, Watt P, Cohen P: The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348: 302–308, 1990PubMedCrossRefGoogle Scholar
  78. 82.
    Sutherland C, Leighton I, Cohen P: Inactivation of glycogen synthase kinase-3b by MAP kinase-activated protein kinase-1 (RSK-2) and p70 S6 kinase; new kinase connections in insulin and growth factor signalling. Biochem J 296: 15–19, 1993PubMedGoogle Scholar
  79. 83.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789, 1995PubMedCrossRefGoogle Scholar
  80. 84.
    Eldar-Finkelman H, Seger R, Vandenheede JR, Krebs EG: Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signalling pathway in NIH/3T3 cells. J Biol Chem 270: 987–990, 1995PubMedCrossRefGoogle Scholar
  81. 85.
    Benito M, Porras A, Nebreda AR, Santos E: Differentiation of 3T3 fibroblasts to adipocytes induced by transfection of Ras oncogenes. Science 253: 565–568, 1991PubMedCrossRefGoogle Scholar
  82. 86.
    Porras A, Maszynski K, Rapp UR, Santos E: Dissociation between activation of Raf-1 and the 42-kDa mitogen-activated protein kinase/ 90-kDa S6 kinase (MAPK/RSK) cascade in the insulin/Ras pathway of adipocytic differentiation of 3T3 L1 cells. J Biol Chem 269: 12741–12748, 1994PubMedGoogle Scholar
  83. 90.
    Yano H, Nakanishi S, Kimura K et al.: Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J Biol Chem 268: 25846–25856, 1993PubMedGoogle Scholar
  84. 91.
    Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR: Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14: 4902–4911, 1994PubMedGoogle Scholar
  85. 92.
    Hara K, Yonezawa K, Sakave H, Ando A, Kotani K, Kitamura T, Kitamura Y, Ueda H, Stephens L, Jackson TR et al.: 1-Phosphatidylinositol 3-kinase activity is required for insulin stimulated glucose transport but not for RAS activation in CHO cells. Proc Natl Acad Sci 91: 7415–7419, 1994PubMedCrossRefGoogle Scholar
  86. 93.
    Robinson LA, Razzack ZF, Lawrence JCJ, James DE: Mitogen-activated protein kinase activation is not sufficient for stimulation of glucose transport or glycogen synthase in 3T3-L1 adipocytes. J Biol Chem 268: 26422–26427, 1993PubMedGoogle Scholar
  87. 94.
    Lin TA, Lawrence JC: Activation of ribosomal protein S6 kinases does not increase glycogen synthesis or glucose transport in rat adipocytes. JBiol Chem 269: 21255–21261, 1994Google Scholar
  88. 95.
    Carpenter CL, Cantley LC: Phosphoinositide kinases. Curr Opin Cell Biol 8: 153–158, 1996PubMedCrossRefGoogle Scholar
  89. 96.
    Toker A, Meyer M, Reddy K et al.: Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3, 4-P2 and PtdIns-3, 4, 5-P3. J Biol Chem 269: 32358–32367, 1994PubMedGoogle Scholar
  90. 97.
    Nakanishi H, Brewer KA, Exton JH: Activation of the z isozyme of protein kinase C by phosphatidylinositol 3, 4, 5-triphosphate. J Biol Chem 268: 13–16, 1993PubMedGoogle Scholar
  91. 98.
    Franke TF, Kaplan DR, Cantley LC: P13K: Downstream AKTion blocks apoptosis. Cell 88: 435–437, 1997PubMedCrossRefGoogle Scholar
  92. 99.
    Farese RV: In: D LeRoith, J Olefsky, S Taylor (eds). Diabetes Mellitus: A Fundamental and Clinical Text. J.P. Lippincott Co., PA, USA, 1996Google Scholar
  93. 100.
    Blackshear PJ: In: B Draznin, D Leroith (eds). The Role (or Lack Thereof) of Protein Kinase C in Insulin Action. Humana Press Inc., New Jersey, USA, 1994, pp 229–244Google Scholar
  94. 101.
    Rameh LE, Chen CS, Cantley LC: Phosphatidylinositol (3, 4, 5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell 83: 821–830, 1995PubMedCrossRefGoogle Scholar
  95. 102.
    Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA: Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci 88: 4171–4175, 1991PubMedCrossRefGoogle Scholar
  96. 103.
    Coffer PJ, Woodgett JR: Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Euro J Biochem 201: 475–481, 1991CrossRefGoogle Scholar
  97. 10k.
    Bellacosa A, Testa JR, Staal SP, Tsichlis PN: A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254: 214–217, 1991CrossRefGoogle Scholar
  98. 105.
    Staal SP, Hartley JW, Rowe WP: Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci 74: 3065–3067, 1977PubMedCrossRefGoogle Scholar
  99. 106.
    Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN: The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81: 727–736, 1995PubMedCrossRefGoogle Scholar
  100. 107.
    Kohn AD, Kovacina KS, Roth RA: Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBOJ 14: 4288–4295, 1995Google Scholar
  101. 108.
    Burgering BM, Coffer PJ: Protein kinase B (c-Akt) in phosphatidyl-inositol-3-OH kinase signal transduction. Nature 376: 599–602, 1995PubMedCrossRefGoogle Scholar
  102. 109.
    Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT: Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 16: 4117–4127, 1996PubMedGoogle Scholar
  103. 110.
    Marte BM, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J: R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 7: 63–70, 1997PubMedCrossRefGoogle Scholar
  104. 111.
    Franke TF, Kaplan DR, Cantley LC, Toker A: Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3, 4-bisphosphate Science 275: 665–668, 1997PubMedCrossRefGoogle Scholar
  105. 112.
    Klippel A, Kavanaugh WM, Pot D, Williams LT: A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17: 338–344, 1997PubMedGoogle Scholar
  106. 113.
    Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA: Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein Phosphatase inhibitors. Proc Natl Acad Sci 93: 5699–5704, 1996PubMedCrossRefGoogle Scholar
  107. 114.
    Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, Kikkawa U: Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci 93: 7639–7643, 1996PubMedCrossRefGoogle Scholar
  108. 115.
    Kohn AD, Takeuchi F, Roth RA: Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271: 21920–21926, 1996PubMedCrossRefGoogle Scholar
  109. 116.
    Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. EMBOJ 15: 6541–6551, 1996Google Scholar
  110. 117.
    Keranen LM, Dutil EM, Newton AC: Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol 5: 1394–1403, 1995PubMedCrossRefGoogle Scholar
  111. 118.
    Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE, Thomas C: The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14: 5279–5287, 1995PubMedGoogle Scholar
  112. 119.
    Alessi DR, james SR, Downes CP, Holmes AB, Gafrey PRJ, Reese CB, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Ba. Curr Biol 7: 261–269, 1997PubMedCrossRefGoogle Scholar
  113. 120.
    Frevert EU, Kahn BB: Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol Cell Biol 17: 190–198, 1997PubMedGoogle Scholar
  114. 121.
    Kohn AD, Summers SA, Birnbaum MJ, Roth RA: Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271: 31372–31378, 1996PubMedCrossRefGoogle Scholar
  115. 122.
    Embi N, Rylatt DB, Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and Phosphorylase kinase. Eur JBiochem 107: 519–527, 1980CrossRefGoogle Scholar
  116. 123.
    Parker PJ, Embi N, Caudwell FB, Cohen P: Glycogen synthase from rabbit skeletal muscle. State of phosphorylation of the seven phosphoserine residues in vivo in the presence and absence of adrenaline. Eur J Biochem 124: 47–55, 1982PubMedCrossRefGoogle Scholar
  117. 124.
    Roach PJ: Multisite and hierarchal protein phosphorylation. J Biol Chem 266: 14139–14142, 1991PubMedGoogle Scholar
  118. 125.
    Cohen P: In: PD Boyer, EG Krebs (eds). The Enzymes. Academic Press, London, 1996, p 462Google Scholar
  119. 126.
    Poulter L, Ang SC, Gibson BW, Williams DH, Holmes CF, Caudwell FB, Pitcher J, Cohen P: Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry. Eur J Biochem 175: 497–510, 1988PubMedCrossRefGoogle Scholar
  120. 127.
    Sheorain VS, Juhl H, Bass M, Soderling TR: Effects of epinephrine, diabetes, and insulin on rabbit skeletal muscle glycogen synthase. Phosphorylation site occupancies. J Biol Chem 259: 7024–7030, 1984PubMedGoogle Scholar
  121. 128.
    Lawrence JC, Hiken JF, DePaoli Roach AA, Roach PJ: Hormonal control of glycogen synthase in rat hemidiaphragms. Effects of two cyanogen bromide fragments. Biol Chem 258: 10710–10719, 1983Google Scholar
  122. 129.
    Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9: 2431–2438, 1990PubMedGoogle Scholar
  123. 130.
    Hughes K, Nikolakaki E, E PS, Totty NF, Woodgett JR: Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBOJ 12: 803–808, 1993Google Scholar
  124. 131.
    Ramakrishna S, Benjamin WB: Insulin action rapidly decreases multifunctional protein kinase activity in rat adipose tissue. J Biol Chem 263: 12677–12681, 1988PubMedGoogle Scholar
  125. 132.
    Hughes K, Ramakrishna SB, Benjamin WB, Woodgett JR: Identification of multifunction ATP-citrate lyase kinase as the alpha-isoform of glycogen synthase kinase-3. Biochem J 288: 309–314, 1992.PubMedGoogle Scholar
  126. 133.
    Welsh GI, Proud CG: Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor EIF-2B. Biochem J 294: 625–629, 1993PubMedGoogle Scholar
  127. 134.
    Stambolic V, Woodgett JR: Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303: 701–704, 1994PubMedGoogle Scholar
  128. 135.
    Sutherland C, Cohen P: The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett 338: 37–42, 1994PubMedCrossRefGoogle Scholar
  129. 136.
    Lawrence JC, Roach PJ: New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes 46: 541–547, 1997PubMedCrossRefGoogle Scholar
  130. 137.
    Smith CJ/ Rubin CS, Rosen OM: Insulin-treated 3T3-L1 adipocytes and cell-free extracts derived from them incorporated 32P into ribosomal protein S6. Proc Natl Acad Sci USA 77: 2641–2645, 1980PubMedCrossRefGoogle Scholar
  131. 138.
    Price DJ, Nemenoff RA, Avruch J: Purification of a hepatic S6 kinase from cycloheximide-treated rats. J Biol Chem 264: 13825–13833, 1989PubMedGoogle Scholar
  132. 139.
    Kozma SC, Lane HA, Ferrari S, Luther H, Siegmaun M, Thomas G: A stimulated S6 kinase from rat liver: Identity with the mitogen activated S6 kinase of 3T3 cells. EMBO J 8: 4125–4132, 1989PubMedGoogle Scholar
  133. 140.
    Kozma SC, Ferrari S, Bassand P, Siegmann M, Totty N, Thomas G: Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily. Proc Natl Acad Sci USA 87: 7365–7369, 1990PubMedCrossRefGoogle Scholar
  134. 141.
    Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J: Molecular structure of a major insulin/mitogen-activated 70 kDa S6 protein kinase. Proc Natl Acad Sci USA 87: 8550–8554, 1990PubMedCrossRefGoogle Scholar
  135. 142.
    Calvo V, Crews CM, Vik TA, Bierer BE: Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin. Proc Natl Acad Sci USA 89: 7571–7575, 1992PubMedCrossRefGoogle Scholar
  136. 143.
    Chung J, Kuo CJ, Crabtree CR, Blenis J: Rapamycin-FKBP specifically blocks growth-dependent activation of a signalling by the 70 kd S6 protein kinases. Cell 69: 1227–1236, 1992PubMedCrossRefGoogle Scholar
  137. 144.
    Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL: Control of p70 s6 kinase bykinase activity of FRAP in vivo. Nature 377: 441–446, 1995PubMedCrossRefGoogle Scholar
  138. 145.
    Dumont FJ, Su Q: Mechanism of action of the immunosuppressant rapamycin. Life Sciences 58(5): 373–395, 1996PubMedCrossRefGoogle Scholar
  139. 146.
    Lane HA, Fernandez A, Lamb NJC, Thomas G: p70s6k function is essential for Gl progression. Nature 363: 170–172, 1993PubMedCrossRefGoogle Scholar
  140. 147.
    Reinhard C, Fernandez A, Lamb NJ, Thomas G: Nuclear localization of p85s6k: Functional requirement for entry into S phase. EMBO J 13: 1557–1565, 1994PubMedGoogle Scholar
  141. 148.
    Jefferies HB, Reinhard C, Kozma SC, Thomas G: Rapamycin selectively represses translation of the ‘polypyrimidine tract’ MRNA family. Proc Natl Acad Sci USA 91: 4441–4445, 1994PubMedCrossRefGoogle Scholar
  142. 149.
    Meyuhas D, Avri P, Shama S: In: JWB Hershey, MB Mathews, N Sonenberg (eds). Translational Control. Cold Spring Harbor Laboratory Press, 1996, p 363Google Scholar
  143. 150.
    DePhilip RM, Rudert WA, Lieberman I: Preferential stimulation of ribosomal protein synthesis by insulin and in the absence of ribosomal and messenger ribonucleic acid formation. Biochem 19: 1662–1669, 1980CrossRefGoogle Scholar
  144. 151.
    Shepherd PR, Nave BT, Siddle K: Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: Evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J 305: 25–28, 1995PubMedGoogle Scholar
  145. 152.
    Azpiazu I, Saltiel AR, DePaoli-Roach AA, Lawrence JC: Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. J Biol Chem 271: 5033–5039, 1996PubMedCrossRefGoogle Scholar
  146. 153.
    Sommercorn J, Fields R, Raz I, Maeda R: Abnormal regulation of ribosomal protein S6 kinase by insulin in skeletal muscle of insulinresistant humans. J Clin Invest 91: 509–514, 1993PubMedCrossRefGoogle Scholar
  147. 154.
    Grove JR, Banerjee P, Balasubramanyam A et al.: Cloning and expression of two human p70 S6 kinase Polypeptides differing only at their amino termini. Mol Cell Biol 11: 5541–5550, 1991PubMedGoogle Scholar
  148. 155.
    Reinhard C, Thomas G, Kozma SC: A single gene encodes two isoforms of the p70 S6 kinase: activation upon mitogenic stimulation. Proc Natl Acad Sci USA 89: 4052–4056, 1992PubMedCrossRefGoogle Scholar
  149. 156.
    Coffer PJ, Woodgett JR: Differential subcellular localisation of two isoforms of p70 S6 protein kinase. Biochem Biophys Res Comm 198: 7806, 1994CrossRefGoogle Scholar
  150. 157.
    Price DJ, Mukhopadhyay NK, Avruch J: Insulin-activated protein kinases phosphorylate a pseudosubstrate synthetic peptide inhibitor ofthe p70S6 kinase. J Biol Chem 266: 16281–16284, 1991PubMedGoogle Scholar
  151. 158.
    Ferrari S, Bannwarth W, Morley SJ, Totty NF, Thomas G: Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci USA 89: 7282–7286, 1992PubMedCrossRefGoogle Scholar
  152. 159.
    Weng Q-P, Andrabi K, Kozlowski MT, Grove JR, Avruch J: Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15: 2333–2340, 1995PubMedGoogle Scholar
  153. 160.
    Cheatham L, Monfar M, Chou MM, Blenis J: Structural and functional analysis of pp70S6k. Proc Natl Acad Sci USA 92: 11696–11700, 1995PubMedCrossRefGoogle Scholar
  154. 161.
    Weng Q-P, Andrabi K, Klippel A, Kozlowski MT, Williams LT, Avruch J: Phosphatidylinositol-3 kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc Natl Acad Sci USA 15: 5744–5748, 1995CrossRefGoogle Scholar
  155. 162.
    Han J-W, Pearson RB, Dennis PB, Thomas G: Rapamycin, wortmannin, and the methylxanthine SQ20006 inactivate p70S6K by inducing dephosphorylation of the same subset of sites. J Biol Chem 270: 21396–21403, 1995PubMedCrossRefGoogle Scholar
  156. 163.
    Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J: PDGF-and insulin-dependent pp70S6k activation mediated by phosphatidyl-inositol-3-OH kinase. Nature 370: 71–75, 1994PubMedCrossRefGoogle Scholar
  157. 164.
    Chou MM, Blenis J: The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Racl. Cell 85: 573–583, 1996PubMedCrossRefGoogle Scholar
  158. 165.
    Dennis PB, Pullen N, Kozma SC, Thomas G: The principal rapamycinsensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol CellBiol 16: 6242–6251, 1996Google Scholar
  159. 166.
    Whitehead IP, Campbell S, Rossman KL, Der CJ: Dbl family proteins. Biochim Biophys Acta 133: 1–23, 1997Google Scholar
  160. 167.
    Levin DE, Errede B: The proliferation of MAP kinase signalling pathways in yeast. Curr Opin Cell Biol 7: 197–202, 1995PubMedCrossRefGoogle Scholar
  161. 168.
    Kyriakis JM, Avruch J: Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 18: 567–577, 1996PubMedCrossRefGoogle Scholar
  162. 169.
    Kyriakis JM, Avruch J: Sounding the alarm: Protein kinase cascades activated by stress and inflammation. 271: 24313-24316, 1996Google Scholar
  163. 170.
    Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR: The stress-activated protein kinase subfamily ofc-jun kinases. Nature 369: 156–160, 1994PubMedCrossRefGoogle Scholar
  164. 171.
    Kyriakis JM, Woodgett JR, Avruch J: The stress-activated protein kinases; A novel ERK subfamily responsive to cellular stress inflammatory cytokines. NY Acad Sci 766: 303–319, 1995CrossRefGoogle Scholar
  165. 172.
    Westwick JK, Weitzel C, Leffert HL, Brenner DA: Activation of Jun kinase is an early event in hepatic regeneration. J Clin Invest 95: 803–810, 1995PubMedCrossRefGoogle Scholar
  166. 173.
    I. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ: FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 15: 4629–4642, 1996PubMedGoogle Scholar
  167. 174.
    Tsakiridis T, Taha C, Crinstein S, Klip A: Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem 271(33): 19664–19667, 1996PubMedCrossRefGoogle Scholar
  168. 175.
    Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78: 1027–1037, 1994PubMedCrossRefGoogle Scholar
  169. 176.
    McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi CP, Young PR: Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 271: 8488–8492, 1996PubMedCrossRefGoogle Scholar
  170. 177.
    Fukunaga R, Hunter T: MAKl, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16: 1921–1933, 1977CrossRefGoogle Scholar
  171. 178.
    Chfton AD, Young PR, Cohen P: A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. FEBS Lett 392: 209–214, 1996CrossRefGoogle Scholar
  172. 179.
    Spiegelman BM, Hotamisligil GS: Through thick and thin: Wasting, obesity, and TNF alpha. Cell 73: 625–627, 1993PubMedCrossRefGoogle Scholar
  173. 180.
    Hotamisligil CS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 271: 665–668, 1996PubMedCrossRefGoogle Scholar
  174. 181.
    Kanety H, Hemi R, Papa MZ, Karasik A: Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-l. J Biol Chem 271: 9895–9897, 1996PubMedCrossRefGoogle Scholar
  175. 182.
    Dong Chen, Waters SB, Holt KH, Pessin JE: SOS phosphorylation and disassociation of the Grb2-SOS complex by the ERK and JNK signalling pathways. J Biol Chem 271: 6328–6332, 1996CrossRefGoogle Scholar
  176. 183.
    Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K: The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem 271: 6497–6591, 1996PubMedCrossRefGoogle Scholar
  177. 184.
    Vojtek AB, Cooper JA: Rho family members: activators of MAP kinase cascades. Cell 82: 527–529, 1995PubMedCrossRefGoogle Scholar
  178. 185.
    Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS: The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signalling pathway. Cell 81: 1137–1146, 1995PubMedCrossRefGoogle Scholar
  179. 186.
    Minden A, Lin A, Claret FX, Abo A, Karin M: Selective activation of the JNK signalling cascade and c-jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81: 1147–1157, 1995PubMedCrossRefGoogle Scholar
  180. 187.
    Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Calas B, Grigorescu F et al.: Involvement of phosphoinositide 3-kinase in insulin-or IGF-1-induced membrane ruffling. EMBO J 13: 2313–2321, 1994PubMedGoogle Scholar
  181. 188.
    Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410, 1992PubMedCrossRefGoogle Scholar
  182. 189.
    Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT: Ras-dependent induction of cellular responses by constitutively active phosphatidyl-inositol-3 kinase. Science 268: 100–102, 1995PubMedCrossRefGoogle Scholar
  183. 190.
    Reif K, Nobes CD, Thomas G, Hall A, Cantrell DA: Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr Biol 6: 1445–1455, 1996PubMedCrossRefGoogle Scholar
  184. 191.
    Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry NU, Waterfield MD, Downward J: Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532, 1994PubMedCrossRefGoogle Scholar
  185. 192.
    Leberer E, Dignard D, Harcus D, Thomas DY, Whiteway M: The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J 11: 4815–4824, 1992PubMedGoogle Scholar
  186. 193.
    Simon MN, De Virgilio C, Souza B, Pringle JR, Abo A, Reed SI: Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature 376: 702–705, 1995PubMedCrossRefGoogle Scholar
  187. 194.
    Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L: A brain serine/ threonine protein kinase activated by Cdc42 and Racl. Nature 367: 40–46, 1994PubMedCrossRefGoogle Scholar
  188. 195.
    Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM: Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pakl. J Biol Chem 270: 23934–23936, 1995PubMedCrossRefGoogle Scholar
  189. 196.
    Polverino A, Frost J, Yang P, Hutchison M, Neiman AM, Cobb MH, Marcus S: Activation of mitogen-activated protein kinase cascades by p21-activated protein kinases in cell-free extracts of Xenopus oocytes. J Biol Chem 270: 26067–26070, 1995PubMedCrossRefGoogle Scholar
  190. 197.
    Galisteo ML, Chernoff J, Su YC, Skolnik EY, Schlessinger J: The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pakl. J Biol Chem 271: 20997–21000, 1996PubMedCrossRefGoogle Scholar
  191. 198.
    Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG: Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem 271(42): 25746–25749, 1996PubMedCrossRefGoogle Scholar
  192. 199.
    Lu W, Katz S, Cupta R, Mayer BJ: Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol 7: 85–94, 1997PubMedCrossRefGoogle Scholar
  193. 200.
    Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, Umikawa M, Mino A, Takai Y: A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 14: 5931–5938, 1PubMedGoogle Scholar
  194. 201.
    Watanabe G, Saito Y, Madaule P, Ishizaki T, Fujisawa K, Morii N, Mukai H, Ono Y, Kakizuka A, Narumiya S: Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science 271: 645–648, 1996PubMedCrossRefGoogle Scholar
  195. 202.
    Amano M, Mukai H, Ono Y, Chihara K, Matsui T, Hamajima Y, Okawa K, lwamatsu A, Kaibuchi K: Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science 271: 648–650, 1996PubMedCrossRefGoogle Scholar
  196. 203.
    Vincent S, Settleman J: The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol 17: 2247–2256, 1997PubMedGoogle Scholar
  197. 204.
    Hill CS, Wynne J, Treisman R: The Rho family GTPases RhoA, Rac1, and CDC42HS regulate transcriptional activation by SRF. Cell 81: 1159–1170, 1995PubMedCrossRefGoogle Scholar
  198. 205.
    Quilliam LA, Lambert QT, Mickelson-Young LA, Westwick JK, Sparks AB, Kay BK, Jenkins NA, Gilbert DJ, Copeland NG, Der CJ: Isolation of a NCK-associated kinase, PRK2, an SH3-binding protein and potential effector of Rho protein signalling. J Biol Chem 271: 28772–28776, 1996PubMedCrossRefGoogle Scholar
  199. 206.
    Pombo CM, Kehrl JH, Sanchez I, Katz P, Avruch J, Zon LI, Woodgett JR, Force T, Kyriakis JM: Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature 377: 750–754, 1995PubMedCrossRefGoogle Scholar
  200. 207.
    Avruch J, Tornqvist HE, Gunsalus JR, Yurkow EJ, Kyriakis JM, Price DJ: Insulin regulation of protein phosphorylation. In: P. Cuatrecasas, S Jacob (eds). Handbook of Experimental Pharmacology. Vol. 92, Chapter 15, Berlin: Springer-Verlag, 1990, pp 313–366Google Scholar
  201. 208.
    Czech MP, Klarlund JK, Yagaloff KA, Bradford AP, Lewis RE: Insulin receptor signalling. Activation of multiple serine kinases. J Biol Chem 263: 1017–11020, 1988Google Scholar
  202. 209.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphoylates and activates PKBα. Curr Biol 7: 261–269, 1997PubMedCrossRefGoogle Scholar
  203. 210.
    Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J: 3-phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the P70 Sb kinase in vivo and in vitro. Curr Biol 8: 69–81, 1997CrossRefGoogle Scholar
  204. 211.
    Dalby KN, Morrice N, Caudwell FB, Avruch J, Cohen P: Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase 2a/P90 rsk that are inducible by MAPK. J Biol Chem 273: 1496–1502, 1998PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Joseph Avruch
    • 1
  1. 1.Diabetes Unit, Medical Services and the Department of Molecular Biology, Massachusetts General Hospital, and the Department of MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations