Skip to main content

Regulation of the Na+/K+- ATPase by insulin: Why and how?

  • Chapter
Insulin Action

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 24))

Abstract

The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits (α and β) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/ K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed. (Mol Cell Biochem 182: 121-133, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lingrel JB, Kuntzweiler T: Na+, K+-ATPase. J Biol Chem 269: 19659–19662, 1994

    PubMed  CAS  Google Scholar 

  2. Jorgensen PL: Structure, function and regulation of Na, K-ATPase in the kidney. Kidney Int 29: 10–20, 1986

    Article  PubMed  CAS  Google Scholar 

  3. Kostic MM, Zivkovic RV: Energy metabolism of reticulocytes: Two different sources of energy for Na+K+-ATPase activity. Cell Biochem Func 12: 107–112, 1994

    Article  CAS  Google Scholar 

  4. Gruwel ML, Alves C, Schrader J: Na+K+-ATPase in endothelial cell energetics: 23Na nuclear magnetic resonance and calorimetry study. Am J Physiol 268: H351–H358, 1995

    PubMed  CAS  Google Scholar 

  5. Ewart HS, Klip A: Hormonal regulation of the Na+-K+-ATPase: Mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269: C295–C311, 1995

    PubMed  CAS  Google Scholar 

  6. Clausen T: The Na+, K+ pump in skeletal muscle: Quantification, regulation and functional significance. Acta Physiol Scand 156: 227–235, 1996

    Article  PubMed  CAS  Google Scholar 

  7. Rose AM, Valdes R Jr: Understanding the sodium pump and its relevance to disease. Clin Chem 40: 1674–1685, 1994

    PubMed  CAS  Google Scholar 

  8. Briggs AP, Koenig I, Doisy EA, Weber CJ: Some changes in the composition of blood due to the injection of insulin. J Biol Chem 58: 721–730, 1924

    CAS  Google Scholar 

  9. Zierler K, Wu FS: Insulin acts on Na, K, and Ca currents. Trans Assoc Am Phys 101: 320–325, 1988

    PubMed  CAS  Google Scholar 

  10. Clausen T, Andersen SL, Flatman JA: Na+-K+ pump stimulation elicits recovery of contractility in K+-paralysed rat muscle. J Physiol 472: 521–536, 1993

    PubMed  CAS  Google Scholar 

  11. Somjen GG: Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41: 159–177, 1979

    Article  PubMed  CAS  Google Scholar 

  12. Stenvinkel P, Bolinder J, Alvestrand A: Effects of insulin on renal haemodynamics and the proximal and distal tubular sodium handling in healthy subjects. Diabetologia 35: 1042–1048, 1992

    Article  PubMed  CAS  Google Scholar 

  13. Weder AB: Sodium metabolism, hypertension, and diabetes. Am J Med Sci 307: S53–S59, 1994

    PubMed  Google Scholar 

  14. Martinez FJ, Sancho-Rof JM: Epidemiology of high blood pressure and obesity. Drugs 46: 160–164, 1993

    Article  PubMed  Google Scholar 

  15. Mercer RW: Structure of the Na, K-ATPase. Int Rev Cytol 137C: 139–168, 1993

    PubMed  CAS  Google Scholar 

  16. Lavoie L, Levenson R, Martin-Vasallo P, Klip A: The molar ratios of a and ß subunits of the Na+-K+-ATPase differ in distinct subcellular membranes from rat skeletal muscle. Biochemistry 36: 7726–7732, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Herrera VL, Cava T, Sassoon D, Ruiz-Opazo N: Developmental cell-specific regulation of Na+K+-ATPase alpha 1-, alpha 2-, and alpha 3-isoformgeneexpression.Am JPhysiol 266: C1301–C1312, 1994

    CAS  Google Scholar 

  18. Andersen JP, Vilsen B: Structure-function relationships of cation translocation by Ca2+-and Na+, K+-ATPases studied by site-directed mutagenesis. FEBS Lett 359: 101–106, 1995

    Article  PubMed  CAS  Google Scholar 

  19. Levenson R: Isoforms of the Na, K-ATPase: Family members in search of function. Rev Physiol Biochem Pharma 123: 1–45, 1994

    Article  CAS  Google Scholar 

  20. Russo JJ, Manuli MA, Ismail-Beigi F, Sweadner K, Edelman IS: Na+-K+-ATPase in adipocyte differentiation in culture. Am J Physiol 259: C968–C977, 1990

    PubMed  CAS  Google Scholar 

  21. Lingrel JB: Na, K-ATPase: Isoform structure, function, and expression. J Bioener Biomem 24: 263–270, 1992

    CAS  Google Scholar 

  22. Repke KR, Megges R, Weiland J, Schon R: Location and properties of the digitalis receptor site in Na+/K+-ATPase. FEBS Lett 359: 107–109, 1995

    Article  PubMed  CAS  Google Scholar 

  23. Canessa CM, Horisberger JD, Louvard D, Rossier BC: Mutation of a cysteine in the first transmembrane segment of Na, K-ATPase alpha subunit confers ouabain resistance. EMBO J 11: 1681–1687, 1992

    PubMed  CAS  Google Scholar 

  24. Lytton J, Lin JC, Guidotti G: Identification of two molecular forms of (Na+, K+)ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem 260: 1177–1184, 1985

    PubMed  CAS  Google Scholar 

  25. McGill DL, Guidotti G: Insulin stimulates both the α1 and the α2 isoforms of the rat adipocyte (Na+, K+) ATPase. J Biol Chem 266: 15824–15831, 1991

    PubMed  CAS  Google Scholar 

  26. Resh MD, Nemenoff RA, Guidotti G: Insulin stimulation of (Na+, K+)-adenosine triphosphatase-dependent 86Rb+ uptake in rat adipocytes. J Biol Chem 255: 10938–10945, 1980

    PubMed  CAS  Google Scholar 

  27. Lytton J: Insulin affects the sodium affinity of the rat adipocyte (Na+, K+)-ATPase. J Biol Chem 260: 10075–10080, 1985

    PubMed  CAS  Google Scholar 

  28. McGill DL, Guidotti G: Insulin stimulates both the alpha 1 and the alpha 2 isoforms of the rat adipocyte (Na+, K+) ATPase. Two mechanisms of stimulation. J Biol Chem 266: 15824–15831, 1991

    PubMed  CAS  Google Scholar 

  29. Brodsky JL: Insulin activation of brain Na+-K+-ATPase i s mediated by alpha 2form of enzyme. Am J Physiol 258: C812–C817, 1990

    PubMed  CAS  Google Scholar 

  30. Matsuda T, Murata Y, Kawamura N, Hayashi M, Tamada K, Takuma K, Maeda S, Baba A:. Selective induction of alpha 1 isoform of (Na+ + K+)-ATPase by insulin/insulin-like growth factor-I in cultured rat astrocytes. Arch Biochem Biophys 307: 175–182, 1993

    Article  PubMed  CAS  Google Scholar 

  31. Malik N, Canfield VA, Beckers M, Gros P, Levenson R: Identification of the mammalian Na, K-ATPase β3 subunit. J Biol Chem 271: 22754–22758, 1996

    Article  PubMed  CAS  Google Scholar 

  32. Hundal HS, Marette A, Ramlal T, Liu Z, Klip A: Expression of beta subunit isoforms of the Na+, K+-ATPase is muscle type-specific. FEBS Lett 328: 253–258, 1993

    Article  PubMed  CAS  Google Scholar 

  33. Jaunin P, Jaisser F, Beggah AT, Takeyasu K, Mangeat P, Rossier BC, Horisberger JD, Geering K: Role of the transmembrane and extracytoplasmic domain of beta subunits in subunit assembly, intracellular transport, and functional expression of Na, K-pumps. J Cell Biol 123: 1751–1759, 1993

    Article  PubMed  CAS  Google Scholar 

  34. McDonough AA, Geering K, Farley RA: The sodium pump needs its beta subunit. FASEB J 4: 1598–1605, 1990

    PubMed  CAS  Google Scholar 

  35. Schmalzing G, Gloor S, Omay H, Kroner S, Appelhans H, Schwarz W: Up-regulation of sodium pump activity in Xenopus laexis oocytes by expression of heterologous beta 1 subunits of the sodium pump. Biochem J279: 329–336, 1991

    Google Scholar 

  36. Eakle KA, Kim KS, Kabalin MA, Farley RA: High-affinity ouabain binding by yeast cells expressing Na+, K+-ATPase alpha subunits and the gastric H+, K+-ATPase beta subunit. Proc Natl Acad Sci USA 89: 2834–2838, 1992

    Article  PubMed  CAS  Google Scholar 

  37. Geering K, Beggah A, Good P, Girardet S, Roy S, Schaer D, Jaunin P: Oligomerization and maturation of Na, K-ATPase: Functional interaction of the cytoplasmic NH2 terminus of the β subunit with the a subunit. J CellBiol 133: 1193–1204, 1996

    Article  CAS  Google Scholar 

  38. Fambrough DM, Lemas MV, Hamrick M, Emerick M, Renaud KJ, Inman EM, Hwang B, Takeyasu K: Analysis of subunit assembly of the Na-K-ATPase. Am J Physiol 266: C579–C589, 1994

    PubMed  CAS  Google Scholar 

  39. Eakle KA, Lyu RM, Farley RA: The influence of beta subunit structure on the interaction of Na+/K+-ATPase complexes with Na-A chimeric beta subunit reduces the Na+ dependence of phosphoenzy me formation from ATP. J Biol Chem 270: 13937–13947, 1995

    Article  PubMed  CAS  Google Scholar 

  40. Hundal HS, Marette A, Mitsumoto Y, Ramlal T, Biostein R, Klip A: Insulin induces translocation of the alpha 2 and beta I subunits of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 267: 5040–5043, 1992

    PubMed  CAS  Google Scholar 

  41. Lemas MV, Hamrick M, Takeyasu K, Fambrough DM: 26 amino acids of an extracellular domain of the Na, K-ATPase alpha-subunit are sufficient for assembly with the Na, K-ATPase beta-subunit. J Biol Chem 269: 8255–8259, 1994

    PubMed  CAS  Google Scholar 

  42. Koster JC, Blanco G, Mercer RW: A cytoplasmic region of the Na, K-ATPase alpha-subunit is necessary for specific alpha1alpha association. J Biol Chem 270: 14332–14339, 1995

    Article  PubMed  CAS  Google Scholar 

  43. Horowitz B, Eakle KA, Scheiner-Bobis G, Randolph GR, Chen CY, Hitzeman RA, Farley RA: Synthesis and assembly of functional mammalian Na, K-ATPase in yeast. J Biol Chem 265: 4189–4192, 1990

    PubMed  CAS  Google Scholar 

  44. Blanco G, De Tomaso AW, Koster J, Xie ZJ, Mercer RW: The alpha subunit of the Na, K-ATPase has catalytic activity independent of the beta-subunit. JBiol Chem 269: 23420–23425, 1994

    CAS  Google Scholar 

  45. McDonough AA, Farley RA: Regulation of Na, K-ATPase activity. Curr OpinNephrol Hyper 2: 725–734, 1993

    Article  CAS  Google Scholar 

  46. Kanbe M, Kitasato H: Stimulation of Na, K-ATPase activity of frog skeletal muscle by insulin. Biochem Biophys Res Commun 134: 609–616, 1986

    Article  PubMed  CAS  Google Scholar 

  47. Omatsu-Kanbe M, Kitasato H: Insulin stimulates the translocation of Na+/K+-dependent ATPase molecules from intracellular stores to the plasma membrane in frog skeletal muscle. Biochem J 272: 727–733, 1990

    PubMed  CAS  Google Scholar 

  48. Marette A, Krischer J, Lavoic L, Ackerley C, Carpentier JL, Klip A: Insulin increases the Na+-K+-ATPase alpha 2-subunit in the surface of rat skeletal muscle: Morphological evidence. Am JPhysiol 265: C1716–C1722, 1993

    CAS  Google Scholar 

  49. Tsakiridis T, Wong PC, Liu Z, Rodgers CD, Vranic M, Klip A: Exercise increases the plasma membrane content of the Na+/K+ pump and its mRNA in skeletal muscles. J App Physiol 80: 699–705, 1996

    CAS  Google Scholar 

  50. Weidmann P, Ferrari P: Central role of sodium in hypertension in diabetic subjects. Diabetes Care 14: 220–232, 1991

    Article  PubMed  CAS  Google Scholar 

  51. Mueckler M: The molecular biology of glucose transport: Relevance to insulin resistance and non-insulin-dependent diabetes mellitus. J Diabetes Comp 7: 130–141, 1993

    Article  CAS  Google Scholar 

  52. Hundal HS, Klip A: Regulation of glucose transporters and the Na/ K-ATPase by insulin in skeletal muscle. Adv Exp Med Biol 334: 6378, 1993

    Google Scholar 

  53. Aledo JC, Hundal HS: Sedimentation and immunological analyses of GLUT4 and a2-Na, K-ATPase subunit-containing vesicles fromrat skeletal muscle: Evidence for segregation. FEBS Lett 376: 211–215, 1995

    Article  PubMed  CAS  Google Scholar 

  54. Lavoie L, He L, Ramlal T, Ackerley C, Marette A, Klip A: The GLUT4 glucose transporter and the alpha 2 subunit of the Na+, K+-ATPase do not localize to the same intracellular vesicles in rat skeletal muscle. FEBS Lett 366: 109–114, 1995

    Article  PubMed  CAS  Google Scholar 

  55. Sargeant R, Mitsumoto Y, Hundal H, Marette A, Liu Z, Klip A: Na+/ K+-ATPase subunit expression and localization in cells in culture: Regulation by insulin. Biophys J 64: A331, 1993

    Google Scholar 

  56. Sargeant RJ, Liu Z, Klip A: Action of insulin on Na+-K+-ATPase and the Na+-K+-2C1-cotransporter in 3T3-L1 adipocytes. Am J Physiol 269: C217–C225, 1995

    PubMed  CAS  Google Scholar 

  57. Payne JA, Forbush Br: Molecular characterization of the epithelial Na-K-Cl cotransporter isoforms. Curr Opin Cell Biol 7: 493–503, 1995

    Article  PubMed  CAS  Google Scholar 

  58. Bertorello AM, Katz AI: Short-term regulation of renal Na-K-ATPase activity: Physiological relevance and cellular mechanisms. Am J Physiol 265: F743–F755, 1993

    PubMed  CAS  Google Scholar 

  59. O’Donnell ME: Role of Na-K-Cl cotransport in vascular endothelial cell volume regulation. Am J Physiol 264: C1316–C1326, 1993

    PubMed  Google Scholar 

  60. O’Donnell ME, Martinez A, Sun D: Endothelial Na-K-Cl cotransport regulation by tonicity and hormones: phosphorylation of cotransport protein. Am JPhysiol 269: C1513–C1523, 1995

    Google Scholar 

  61. Haussinger D: The role of cellular hydration in the regulation of cell function.BiochemJ 313: 697–710, 1996

    Google Scholar 

  62. Tohda H, Foskett JK, O’Brodovich H, Marunaka Y: Cl-regulation of a Ca activated nonselective cation channel in beta-agonist-treated fetal distal lung epithelium. Am J Physiol 266: C104–C109, 1994

    PubMed  CAS  Google Scholar 

  63. Bird IM, Word RA, Clyne C, Mason Jl, Rainey WE: Potassium negatively regulates angiotensin II type I receptor expression in human adrenocortical H295R cells. Hypertension 25: 1129–1134, 1995

    Article  PubMed  CAS  Google Scholar 

  64. Klip A, Ramlal T, Cragoe EJ Jr: Insulin-induced cytoplasmic alkalinization and glucose transport in muscle cells. Am J Physiol 250: C720–C728, 1986

    PubMed  CAS  Google Scholar 

  65. Klip A: Action of insulin on Na+/H+ exchange. In: S Grinstein (ed). CRC ‘Na+/H+ Exchange’. 1988, pp 285–303

    Google Scholar 

  66. Lynch CJ, Mader AC, McCall KM, Ng YC, Hazen SA: Okadaic acid stimulates ouabain-sensitive 86Rb+-uptake and phosphorylation of the Na+/K+-ATPase alpha-subunit in rat hepatocytes. FEBS Lett 355: 157–162, 1994

    Article  PubMed  CAS  Google Scholar 

  67. Rosic NK, Standaert ML, Pollet RJ: The mechanism of insulin stimulation of (Na+, K+)-ATPase transport activity in muscle. J Biol Chem260: 6206-6212, 1985

    Google Scholar 

  68. Sampson SR, Brodie C, Alboim SV: Role of protein kinase C in insulin activation of the Na-K pump in cultured skeletal muscle. Am J Physiol 266: C751–C758, 1994

    PubMed  CAS  Google Scholar 

  69. McDonough AA, Thompson CB: Role of skeletal muscle sodium pumps in the adaptation to potassium deprivation. Acta Physiol Scand 156: 295–304, 1996

    Article  PubMed  CAS  Google Scholar 

  70. Weil E, Sasson S, Gutman Y: Mechanism of insulin-induced activation of Na+-K+-ATPase in isolated rat soleus muscle. Am J Physiol 261: C22–C230, 1991

    Google Scholar 

  71. Brodie C, Sampson SR: Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracerular sodium ions. J Cell Physiol 140: 131–137, 1989

    Article  PubMed  CAS  Google Scholar 

  72. McGeoch JE, Morielli AD: An insulin-sensitive cation channel controls [Na+]. via [Ca2+]-regulated Na+ and Ca2+ entry. Mol Biol Cell 5: 485–496, 1994

    PubMed  CAS  Google Scholar 

  73. Brodsky JL: Characterization of the (Na+ (+) K+)-ATPase from 3T3-F442A fibroblasts and adipocytes. Isozymes and insulin sensitivity. J Biol Chem 265: 10458–10465, 1990

    PubMed  CAS  Google Scholar 

  74. Cornelius F, Logvinenko N: Functional regulation of reconstituted Na, K-ATPase by protein kinase A phosphorylation. FEBS Lett 380: 277–280, 1996

    Article  PubMed  CAS  Google Scholar 

  75. Garg LC, Saha PK, Mohuczy-Dominiak D: Cholinergic inhibition of Na-K-ATPase via activation of protein kinase C in Madin-Darby canine kidney cells. J Am Soc Nephrol 4: 195–205, 1993

    PubMed  CAS  Google Scholar 

  76. Aperia A, Holtback U, Syren ML, Svensson LB, Fryckstedt J, Greengard P: Activation/deactivation of renal Na+, K+-ATPase: A final common pathway forregulation of natriuresis. FASEB J 8: 436–439, 1994

    PubMed  CAS  Google Scholar 

  77. Feraille E, Marsy S, Cheval L, Barlet-Bas C, Khadouri C, Favre H, Doucet A: Sites of antinatriuretic action of insulin along rat nephron. Am J Physiol 263: F175–F179, 1992

    PubMed  CAS  Google Scholar 

  78. Feraille E, Carranza ML, Rousselot M, Favre H: Insulin enhances sodium sensitivity of Na-K-ATPase in isolated rat proximal convoluted tubule. Am J Physiol 267: F55–F62, 1994

    PubMed  CAS  Google Scholar 

  79. Feraille E, Rousselot M, Rajerison R, Favre H: Effect of insulin on Na+, K+-ATPase in rat collecting duct. J Physiol 488: 171–180, 1995

    PubMed  CAS  Google Scholar 

  80. Russo JJ, Sweadner KJ: Na+-K+-ATPase subunit isoform pattern modification by mitogenic insulin concentration in 3T3-L1 preadipocytes. Am JPhysiol 264: C311–C316, 1993

    CAS  Google Scholar 

  81. Tirupattur PR, Ram JL, Standley PR, Sowers JR: Regulation of Na+, K+-ATPase gene expression by insulin in vascular smooth muscle cells. Am J Hyper 6: 626–629, 1993

    CAS  Google Scholar 

  82. Tsakiridis T, McDowell HE, Walker T, Downes CP, Hundal HS, Vranic M, Klip A: Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology 136: 4315–4322, 1995

    Article  PubMed  CAS  Google Scholar 

  83. Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR: Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14: 4902–4911, 1994

    PubMed  CAS  Google Scholar 

  84. Fry MJ: Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1226: 237–268, 1994

    Article  PubMed  CAS  Google Scholar 

  85. Standaert ML, Avignon A, Yamada K, Bandyopadhyay G, Farese RV: The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes. Biochem J 313: 1039–1046, 1996

    PubMed  CAS  Google Scholar 

  86. Xing M, Insel PA: Protein kinase C-dependent activation of cytosolic phospholipase A2 and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest 97: 1302–1310, 1996

    Article  PubMed  CAS  Google Scholar 

  87. Xia P, Kramer RM, King GL: Identification of the mechanism for the inhibition of Na+, K+-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J Clin Invest 96: 733–740, 1995

    Article  PubMed  CAS  Google Scholar 

  88. Satoh T, Cohen HT, Katz AI: Intracellular signaling in the regulation of renal Na-K-ATPase. I. Role of cyclic AMP and phospholipase A2. J Clinlnvest 89: 1496–1500, 1992

    Article  CAS  Google Scholar 

  89. Ver A, Csermely P, Banyasz T, Kovacs T, Somogyi J: Alterations in the properties and isoform ratios of brain Na+/K+-ATPase in streptozotocin diabetic rats. Biochim Biophys Acta 1237: 143–150, 1995

    Article  PubMed  Google Scholar 

  90. Lijnen P: Alterations in sodium metabolism as an etiological model for hypertension. Cardiovasc Drugs Ther 9: 377–399, 1995

    Article  PubMed  CAS  Google Scholar 

  91. Leese GP, Vora JP: The management of hypertension in diabetes: With special reference to diabetic kidney disease. Diabet Med 13: 401–410, 1996

    Article  PubMed  CAS  Google Scholar 

  92. Tepel M, Bauer S, Husseini S, Raffelsiefer A, Zidek W: Increased cytosolic free sodium concentrations in platelets from type 2 (noninsulin-dependent) diabetic patients is associated with hypertension. J Endocrinol 138: 565–572, 1993

    Article  PubMed  CAS  Google Scholar 

  93. Tamaoki J, Tagaya E, Yamawaki I, Konno K: Hypoxia impairs nitrovasodilator induced pulmonary vasodilation: role of Na-K-ATPase activity. Am J Physiol 271: L172–L177, 1996

    PubMed  CAS  Google Scholar 

  94. Sowers JR: Effects of insulin and IGF-1 on vascular smooth muscle glucose and cation metabolism. Diabetes 45: S47–S51, 1996

    PubMed  CAS  Google Scholar 

  95. Dorup I, Clausen T: Insulin-like growth factor I stimulates active Na+-K+ transport in rat soleus muscle. Am J Physiol 268: E849–E857, 1995

    PubMed  CAS  Google Scholar 

  96. Raccah D, Gallice P, Pouget J, Vague P: Hypothesis: Low Na/K-ATPase activity in the red cell membrane, a potential marker of the predisposition to diabetic neuropathy. Diab Metabol 18: 236–241, 1992

    CAS  Google Scholar 

  97. Fink DJ, Datta S, Mata M: Isoform specific reductions in Na+, K+-ATPase catalytic (alpha) subunits in the nerve of rats with streptozotocin-induced diabetes. JNeurochem 63: 1782–1786, 1994

    Article  CAS  Google Scholar 

  98. Greene DA, Lattimer SA, Sima AA: Sorbitol, phosphoinositides, and sodium potassium-ATPase in the pathogenesis of diabetic complications. New Eng J Med 316: 599–606, 1987

    Article  PubMed  CAS  Google Scholar 

  99. Stevens MJ, Dananberg J, Feldman EL, Lattimer SA, Kamijo M, Thomas TP, Shindo H, Sima AA, Greene DA: The linked roles of nitric oxide, aldose reductase and, (Na+, K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat J Clin Invest 94: 853–859, 1994

    Article  PubMed  CAS  Google Scholar 

  100. King GL, Kunisaki M, Nishio Y, Inoguchi T, Shiba T, Xia P: Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes 45: S105–S108, 1996

    Article  PubMed  CAS  Google Scholar 

  101. Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald H Jr, Neel DA, Rito CJ, Singh U, Stramm LE, Melikian-Badalian A, Baevsky M, Ballas LM, Hall SE, Winneroski LL, Faul MM: (S)-13-[(dimethyl-amino)methyll-10, l l, 14, 15-tetrahydro-4, 9: 16, 21-dimetheno-1H, 13H-dibenzo[e, k]pyrrolo[3, 4h][1, 4, 13]oxadiazacyclohexadecene-1, 3(2H)-dione (LY333531) and related analogues: Isozyme selective inhibitors of protein kinase C beta. J Med Chem 39: 2664–2671, 1996

    Article  PubMed  CAS  Google Scholar 

  102. Mimura M, Makino H, Kanatsuka A, Asai T, Yoshida S: Reduction of erythrocyte (Na+-K+)ATPase activity in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Horm Metab Res 26: 33–38, 1994

    Article  PubMed  CAS  Google Scholar 

  103. Clerico A, Giampietro O: Is the endogenous digitalis-like factor the link between hypertension and metabolic disorders as diabetes mellitus, obesity and acromegaly? Clin Physiol Biochem 8: 153–168, 1990

    PubMed  CAS  Google Scholar 

  104. Akopyanz NS, Broude NE, Bekman EP, Marzen EO, Sverdlov ED: Tissue-specific expression of Na, K-ATPase beta-subunit. Does beta 2 expression correlate with tumorigenesis? FEBS Lett 289: 8–10, 1991

    Article  PubMed  CAS  Google Scholar 

  105. Martin-Vasallo P, Ghosh S, Coca-Prados M: Expression of Na, K-ATPase alpha subunit isoforms in the human ciliary body and cultured ciliary epithelial cells. J Cell Physiol 141: 243–252, 1989

    Article  PubMed  CAS  Google Scholar 

  106. Shamraj OI, Melvin D, Lingrel JB: Expression of Na, K-ATPase isoforms in human heart. Biochem Biophys Res Comm 179: 1434–1440, 1991

    Article  PubMed  CAS  Google Scholar 

  107. Zahler R, Sun W, Ardito T, Zhang ZT, Kocsis JD, Kashgarian M: The alpha3 isoform protein of the Na+, K+-ATPase is associated with the sites of cardiac and neuromuscular impulse transmission. Circ Res 78: 870–879, 1996

    Article  PubMed  CAS  Google Scholar 

  108. Gick GG, Hatala MA, Chon D, Ismail-Beigi F: Na, K-ATPase in several tissues of the rat: tissue-specific expression of subunit mRNAs and enzyme activity. J Mem Biol 131: 229–236, 1993

    Article  CAS  Google Scholar 

  109. Clapp WL, Bowman P, Shaw GS, Patel P, Kone BC: Segmental localization of mRNAs encoding Na+-K+-ATPase alpha-and beta-subunit isoforms in rat kidney using RT-PCR. Kidney Int 46: 627–638, 1994

    Article  PubMed  CAS  Google Scholar 

  110. Songu-Mize E, Liu X, Stones JE, Hymel LJ: Regulation of Na+, K+-ATPase alpha-subunit expression by mechanical strain in aortic smooth muscle cells. Hypertension 27: 827–832, 1996

    Article  PubMed  CAS  Google Scholar 

  111. Giannella RA, Orlowski J, Jump ML, Lingrel JB: Na+-K-ATPase gene expression in rat intestine and Caco-2 cells: Response to thyroid hormone. Am J Physiol 265: G775–G782, 1993

    PubMed  CAS  Google Scholar 

  112. Martin-Vasallo P, Dackowski W, Emanuel JR, Levenson R: Identification of a putative isoform of the Na, K-ATPase beta subunit. Primary structure and tissue-specific expression. J Biol Chem 264: 4613–4618, 1989

    PubMed  CAS  Google Scholar 

  113. Coca-Prados M, Femandez-Cabezudo MJ, Sanchez-Torres J, Crabb J-W, Ghosh S: Cell-specific expression of the human Na+, K+-ATPase beta 2 subunit isoform in the nonpigmented ciliary epithelium. Invest Ophth Vis Sci 36: 2717–2728, 1995

    CAS  Google Scholar 

  114. Book CB, Moore RL, Semanchik A, Ng YC: Cardiac hypertrophy alters expression of Na+, K+-ATPase subunit isoforms at mRNA and protein levels in rat myocardium. J Mol Cell Cardiol 26: 591–600, 1994

    Article  PubMed  CAS  Google Scholar 

  115. Ahn KY, Madsen KM, Tisher CC, Kone BC: Differential expression and cellular distribution of mRNAs encoding alpha-and beta-isoforms of Na+-K+-ATPase in rat kidney. Am J Physiol 265: F792–F801, 1993

    PubMed  CAS  Google Scholar 

  116. Hundal HS, Maxwell DL, Ahmed A, Darakhshan F, Mitsumoto Y, Klip A: Subcellular distribution and immunocytochemical localization of Na, K-ATPase subunit isoforms in human skeletal muscle. Mol Mem Biol 11: 255–262, 1994

    Article  CAS  Google Scholar 

  117. Ikeda U, Takahashi M, Okada K, Saito T, Shimada K: Regulation of Na-KATPase gene expression by angiotensin II in vascular smooth muscle cells. Am J Physiol 267: H1295–H1302, 1994

    PubMed  CAS  Google Scholar 

  118. Khan I, Collins SM: Altered expression of sodium pump isoforms in the inflamed intestine of Trichinella spiralis- infected rats. Am J Physiol 264: G1160–G1168, 1993

    PubMed  CAS  Google Scholar 

  119. Fink DJ, Fang D, Li T, Mata M: Na, K-ATPase beta subunit isoform expression in the peripheral nervous system of the rat. Neurosci Lett 183: 206–209, 1995

    Article  PubMed  CAS  Google Scholar 

  120. Gould GW, Holman GD: The glucose transporter family: Structure, function and tissue-specific expression. Biochem J 295: 329–341, 1993

    PubMed  CAS  Google Scholar 

  121. Ng YC, Tolerico PH, Book CB: Alterations in levels of Na+-K+-ATPase isoforms in heart, skeletal muscle, and kidney of diabetic rats. Am J Physiol 265: E243–E251, 1993

    PubMed  CAS  Google Scholar 

  122. Nishida K, Ohara T, Johnson J, Wallner JS, Wilk J, Sherman N, Kawakami K, Sussman KE, Draznin B: Na+/K+-ATPase activity and its alpha II subunit gene expression in rat skeletal muscle: Influence of diabetes, fasting, and refeeding. Metab Clin Exper 41: 56–63, 1992

    Article  CAS  Google Scholar 

  123. Mooradian AD, Grabau G, Bastani B: Adenosine triphosphatases of rat cerebral microvessels. Effect of age and diabetes mellitus. Life Sci 55: 1261–1265, 1994

    Article  PubMed  CAS  Google Scholar 

  124. Nowak TV, Castelaz C, Ramaswamy K, Weisbruch JP: Impaired rodent vagal nerve sodium-potassium-ATPase activity in streptozotocin diabetes. J Lab Clin Med 125: 182–186, 1995

    PubMed  CAS  Google Scholar 

  125. Ottlecz A, Bensaoula T: Captopril ameliorates the decreased Na+, K+-ATPase activity in the retina of streptozotocin-induced diabetic rats. Invest Ophth Vis Sci 37: 1633–1641, 1996

    CAS  Google Scholar 

  126. Madsen KL, Ariano D, Fedorak RN: Vanadate treatment rapidly improves glucose transport and activates 6-phosphofructo-l-kinase in diabetic rat intestine. Diabetologia 38: 403–412, 1995

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sweeney, G., Klip, A. (1998). Regulation of the Na+/K+- ATPase by insulin: Why and how?. In: Srivastava, A.K., Posner, B.I. (eds) Insulin Action. Developments in Molecular and Cellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5647-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5647-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7584-5

  • Online ISBN: 978-1-4615-5647-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics