Skip to main content

Reliability

  • Chapter

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 1))

Abstract

The chapter presents applications of the fuzzy set theory to the reliability engineering field. It starts by a historical perspective of reliability engineering and some questions in classical reliability. Then, it reviews the probabilistic method of the system reliability analysis from the fuzzy set theoretical point of view. Next, it makes a survey of the probability approach and the non-probabilistic measure approach. Especially, the non-probabilistic measure approach focuses on the introduction of natural language expressions and experts’ subjectivity to the system reliability analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, R. E. and Proschan, F.(1965). Mathematical theory of reliability, John Wiley and Sons Inc., New York.

    MATH  Google Scholar 

  • Barlow, R. E. and Proschan, F. (1975). Statistical theory of reliability and life testing, Holt, Rinehart and Winston, New York.

    MATH  Google Scholar 

  • Barlow, R. E. and Wu, S. A.(1978). Coherent systems with multistate components, Mathematics in Operations Research, 3, 275–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Barlow, R. E.(1984). Mathematical theory of reliability: A historical perspective, IEEE Transactions on Reliability 33, 16–20.

    Article  MATH  Google Scholar 

  • Baxter, L. A. (1984). Continuum structures I, Journal of Applied Probability, 21, 802–815.

    Article  MathSciNet  MATH  Google Scholar 

  • Baxter, L. A. (1986). Continuum structures II, Mathematical Proceedings of the Cambridge Philosophical Society, 99, 331–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Baxter, L. A. and Kim, C. (1986). Bounding the stochastic performance of continuum structure functions I, Journal of Applied Probability, 23, 660–669.

    Article  MathSciNet  MATH  Google Scholar 

  • Baxter, L. A. and Kim, C. (1987). Bounding the stochastic performance of continuum structure functions II, Journal of Applied Probability, 24, 609–618

    Article  MathSciNet  MATH  Google Scholar 

  • Baxter, L. A. (1988). On the theory of cannibalization, Journal of Mathematical Analysis and Applications, 136, 290–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum, Z. W., Esary, J. D. and Saunders, S. C. (1961). Multicomponent systems and structures and their reliability, Technometrics, 3, 55–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum, Z. W. and Esary, J. D. (1965). Modules of coherent binary systems, SIAM Journal on Applied Mathematics, 13, 444–462.

    Article  MATH  Google Scholar 

  • Block, H. W. and Savits, T. H. (1982). A decomposition theorem for multistate structure functions, Journal of Applied Probability, 19, 391–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Bowels, J. B. and Pelaez, C. (1995). Application of fuzzy logic to reliability engineering, Proceedings of the IEEE, 83, 435–449.

    Article  Google Scholar 

  • Cai, K. Y., Wen, C. Y. (1990). Stree-lighting lamps replacement: A fuzzy viewpoint, Fuzzy Sets and Systems, 37, 161–172.

    Article  MathSciNet  Google Scholar 

  • Cai, K. Y., Wen, C. Y. and Zhang, M. L. (1991a). Fuzzy reliability modelling of gracefully degradable computing systems, Reliability Engineering and System Safety, 33, 141–157.

    Article  Google Scholar 

  • Cai, K. Y., Wen, C. Y. and Zhang, M. L. (1991b). Posbist reliability behavior of typical systems with two types of failures, Fuzzy Sets and Systems, 43, 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, K. Y., Wen, C. Y. and Zhang, M. L. (1991c). Fuzzy variables as a basis for theory of fuzzy reliability in the possibility context, Fuzzy Sets and Systems, 42, 145–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, K. Y., Wen, C. Y. and Zhang, M. L. (1993). Fuzzy states as a basis for a theory of fuzzy reliability, Microelectronics and Reliability, 33, 2253–2263.

    Article  Google Scholar 

  • Cai, K. Y., Wen, C. Y. and Zhang, M. L. (1995). Coherent systems in profust reliability theory, in Reliability and Safety Analyses under Fuzziness, Onisawa, T. and Kacprzyk, J. eds., Physica-Verlag, A Springer-Verlag Company, Heidelberg, 81-94. Caldarola, L. (1980). Fault-tree analysis with multistate components, in Synthesis and Analysis for Safety and Reliability Studies, Apostolakis, G, Garriba, S. and Volta, G. eds., Plenum Press, New York, 199–248.

    Google Scholar 

  • Cappelle, B. (1991). Multistate structure functions and possibility theory: An alternative approach to reliability, in Introduction to the Basic Principles of Fuzzy Set Theory and Some of its Applications, Kerre, E.E. ed., Communication and Cognition, Gent, 252–293.

    Google Scholar 

  • Cappelle, B. and Kerre, E.E. (1994a). Possibilistic and necessitic reliability functions: Fundamental concepts and theorems to represent non-probabilistic uncertainty in reliability theory, in Uncertainty Modelling and Analysis: Theory and Applications, Ayyub, B. M. and Gupta, M. M. eds., Elsevier Science B. V., North Holland, 131–144.

    Google Scholar 

  • Cappelle, B. and Kerre, E. E. (1994b). A general possibilistic framework for reliability theory, Proceedings of the Information Processing and management of Uncertainty in Knowledge-Based Systems Conference-IPMU 5, Bouchon-Meunier, B. and Yager, R. eds., 25–35.

    Google Scholar 

  • Cappelle, B. (1995). On the notion state in multistate structure function theory, in Fuzzy Set Theory and Advanced Mathematical Applications, Ruan, D. ed., Kluwer Academic Publishers, Boston, 201–221.

    Chapter  Google Scholar 

  • Cappelle, B. and Kerre, E. E. (1995a). Issue in possibilistic reliability theory, in Reliability and Safety Analyses under Fuzziness, Onisawa, T. and Kacprzyk, J. eds., Physica-Verlag, A Springer-Verlag Company, Heidelberg, 61–80.

    Google Scholar 

  • Cappelle, B. and Kerre, E. E. (1995b). Computer assisted reliability analysis: An application of possibilistic reliability theory to a subsystem of a nuclear power plant, Fuzzy Sets and Systems, 74, 103–113.

    Article  MATH  Google Scholar 

  • Cappelle, B. and Kerre, E. E. (1995c). An algorithm to compute possibilistic reliability, Proceedings of the Third of International Symposium on Uncertainty Modelling and Analysis and the Annual Conference of the North American Fuzzy Infromation Processing Society.

    Google Scholar 

  • Carvallo, M. (1965). Principles et applications de l’analyse booléenne, Gauthier-Villars, Paris.

    MATH  Google Scholar 

  • Cohen, H. (1984). Space reliability technology: A historical perspective, IEEE Transactions on Reliability, 33, 36–40.

    Google Scholar 

  • de Cooman, G. (1993). Evaluation Sets and mappings: An order theoretic approach to vagueness and uncertainty, Doctoral Dissertation, Universiteit Gent(in Dutch).

    Google Scholar 

  • Dhillon, B. S. (1980). A system with two kinds of 3-state elements, IEEE Transactions on Reliability, 29, 345.

    Article  Google Scholar 

  • Dubes, R. C. (1963). Two algorithms for computing reliability, IEEE Transactions on Reliability, 12, 55–63.

    Article  Google Scholar 

  • Dubois, A. and Prade, H. (1980). Fuzzy sets and systems: Theory and applications, Academic Press, New York.

    MATH  Google Scholar 

  • El-Neweihi, E., Proschan, F. and Sethuraman, J. (1978). Multistate coherent systems, Journal of Applied Probability, 15, 675–688.

    Article  MathSciNet  MATH  Google Scholar 

  • Elsayed, E. A. and Zebib, A. (1979). A repairable multistate device, IEEE, Transactions on Reliability, 28, 81–82.

    Article  MATH  Google Scholar 

  • Embrey, D. E. (1984). SLIM-MAUD(Success Likelihood Index Methodology Multi-Attribute Utility Decomposition): An approach to assessing human error probabilities using structured expert judgement, NUREG/CR-3518.

    Google Scholar 

  • Esary, J. D. and Proschan, F. (1962). The reliability of coherent systems, in Redundancy Techniques for Computing Systems, Wilcox, R. H. and Mann, C.W. eds., Spartan Books, Washington D. C., 47–61.

    Google Scholar 

  • French, S. (1990). On being enumerate, The University of Leeds Review, 33, 119–134.

    Google Scholar 

  • Fussell, J. B. (1973). Fault-tree analysis: Concepts and techniques, Proceedings of the NATO Conference on Reliability, NATO Advanced Study Institute on Generic Techniques of System Reliability, Liverpool.

    Google Scholar 

  • Fussell, J.B. (1984). Nuclear power system reliability: A historical perspective, IEEE Transactions on Reliability, 33, 41–47.

    MathSciNet  Google Scholar 

  • Gazdík, I. (1986). RELSHELL, An expert system shell for fault diagnosis, in Fault Diagnosis, Reliability and related Knowledge-Based Approaches, Tzafestas, Singh, Schmidt, eds., D Reidel.

    Google Scholar 

  • Gazdik, I. (1996). Zadeh’s extension principle in design reliability, Fuzzy Sets and Systems, 83, 169–178.

    Article  MathSciNet  Google Scholar 

  • Gnedenko, B., Beliaev, Y. and Soloviev, A. (1972). Méthodes mathématiques en théorie de la fiabilité, Mir, Moscow.

    Google Scholar 

  • Griffith, W. S. (1980). Multistate reliability models, Journal of Applied Probability, 17, 735–744.

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith, W. S. (1982). A multistate availability model: System performance and component importance, IEEE Transactions on Reliability, 31, 97–98.

    Article  MATH  Google Scholar 

  • IAEA and NEA (OECD) (1992). INES: The international nuclear event scale user’s manual, revised and extended edition.

    Google Scholar 

  • Kaufmann, A. Cyouokko, D. and Cryon, R. (1977). Mathematical models for the study of the reliability of systems, Academic Press, New York.

    Google Scholar 

  • Kenarangui, R. (1991). Event-tree analysis by fuzzy probability, IEEE Trans. on Reliability, 40, 120–124.

    Article  MATH  Google Scholar 

  • Misra, K. B. and Sharma, A. (1981). Performance index to quantify reliability using fuzzy subset theory, Microelectronics and Reliability, 21, 543–549.

    Article  Google Scholar 

  • Misra, K. B. and Weber, G. G. (1990). Use of fuzzy set theory for level-1 studies in probabilistic risk assessment, Fuzzy Sets and Systems, 37, 139–160.

    Article  MathSciNet  Google Scholar 

  • Mizumoto, M. (1989). Pictorial representations of fuzzy connectives, Part I: Cases of t-norms, t-conorms, and averaging operators, Fuzzy Sets and Systems, 31, 217–242.

    Article  MathSciNet  Google Scholar 

  • Montero, J. Tejada, J. and Yáñez, J. (1988). General structure functions, Proceedings of Workshop on Knowledge-Based Systems and Models of Logical Reasoning, Egypt.

    Google Scholar 

  • Montero, J., Cappelle, B. and Kerre, E. E. (1995). The usefulness of complete lattices in reliability theory, in Reliability and Safety Analyses under Fuzziness, Onisawa, T. and Kacprzyk, J. eds., Physica-Verlag, A Springer-Verlag Company, Heidelberg, 95–110.

    Google Scholar 

  • Moore, E. F. and Shannon, C. E. (1956a). Reliable circuits using less reliable relays I, Journal of the Franklin Institute, 262, 191–208.

    Article  MathSciNet  Google Scholar 

  • Moore, E. F. and Shannon, C. E. (1956b). Reliable circuits using less reliable relays II, Journal of the Franklin Institute, 262, 281–297.

    Article  MathSciNet  Google Scholar 

  • Murchland, J. D. (1975). Fundamental concepts and relations for reliability analysis of multi state systems. in Reliability and Fault Tree Analysis, Barlow, R. E, Fussell, J. B. and Singpurwalla, N. D. eds., SIAM, Philadelphia, 581–618.

    Google Scholar 

  • Natvig, B. (1982). Two suggestions of how to define a multistate coherent system, Advances in Applied Probability, 14, 434–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Noma, K. Tanaka, H. and Asai, K. (1981). On fault tree analysis with fuzzy probability, The Japanese Journal of Ergonomics, 17, 291–297(in Japanese).

    Article  Google Scholar 

  • Onisawa, T. (1986). Performance shaping factors modelling using the error possibility and fuzzy integrals, The Japanese Journal of Ergonomics, 22, 81–89(in Japanese).

    Article  Google Scholar 

  • Onisawa, T. (1988). An approach to human reliability in man-machine systems using error possibility, Fuzzy Sets and Systems, 27. 87–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Onisawa, T. (1990). An application of fuzzy concepts to modelling of reliability analysis, Fuzzy Sets and Systems, 37, 269–286.

    Article  MathSciNet  Google Scholar 

  • Onisawa, T. (1991). Fuzzy reliability assessment considering the influence of many factors on reliability, International Journal of Approximate Reasoning, 5, 265–280.

    Article  MATH  Google Scholar 

  • Onisawa, T. (1993). On fuzzy sets operations in system reliability analysis with natural language, Journal of Japan Society for Fuzzy Theory and Systems, 5, 43–54(in Japanese).

    Google Scholar 

  • Onisawa, T. and Misra, K. B. (1993). Use of fuzzy sets theory(Part-II: Applications), in New Trends in System Reliability Evaluation, Misra, K. B. ed., Elsevier, The Netherlands, 551–586.

    Chapter  Google Scholar 

  • Onisawa, T. (1994). A few remarks on membership function in fuzzy reliability analysis, Proc. of 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing, Iizuka, Japan, 635–636.

    Google Scholar 

  • Onisawa, T. and Kacprzyk, J. eds. (1995) Reliability and Safety Analyses under Fuzziness, Physica-Verlag, A Springer-Verlag Company, Heidelberg.

    MATH  Google Scholar 

  • Onisawa, T. (1995). Subjective system reliability analysis and mutual agreements of its results, in Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems, Bien, Z. and Min, K. C. eds., Kluwer Academic Publishers, The Netherlands, 265–274.

    Chapter  Google Scholar 

  • Onisawa, T. (1996). Subjective analysis of system reliability and its analyzer, Fuzzy Sets and Systems, 83, 249–269.

    Article  MathSciNet  Google Scholar 

  • Premo, A. F. (1963). The use of Boolean algebra and a truth table in the formulation of a mathematical model of success, IEEE Transactions on Reliability, 12, 45–49.

    Article  Google Scholar 

  • Sadatoku, H., Nagamachi, M., Matsubara, Y. and Onisawa, T. (1993). An analysis of human-error factors using fuzzy integral-measure model and natural language, The Japanese Journal of Ergonomics, 29, 289–297(in Japanese).

    Article  Google Scholar 

  • Schmucker, K. J. (1984). Fuzzy sets, natural language computations, and risk analysis, Computer Press, Rockville, M. D.

    MATH  Google Scholar 

  • Shooman, M. L. (1984). Software reliability: A historical perspective, IEEE Transactions on Reliability, 33, 48–55.

    Google Scholar 

  • Singer, D. (1990). A fuzzy set approach to fault and reliability analysis, Fuzzy Sets and Systems, 34, 145–155.

    Article  Google Scholar 

  • Svenson, O. (1989). On expert judgement in safety analyses in the process industries, Reliability Engineering and System Safety, 25, 219–256.

    Article  Google Scholar 

  • Swain, A. D. (1963). A method for performing a human factors reliability analysis, Report SCR-685, Sandia Corporation.

    Google Scholar 

  • Swain, A. D. and Guttmann, H. E. (1983). Handbook of human reliability analysis with emphasis on nuclear power plant applications, NUREG/CR-1278.

    Google Scholar 

  • Tanaka, H., Fan, L. T., Lui, F. S. and Toguchi, K. (1983). Fault tree analysis by fuzzy probability, IEEE Trans. on Reliability, 32, 453–457.

    Article  MATH  Google Scholar 

  • U. S. Atomic Energy Commission (1974). Reactor safety study: An assessment of accident risks in U.S. commercial nuclear power plants, WASH-1400.

    Google Scholar 

  • Washio, T., Takahashi, H. and Kitamura, M. (1992). A method for supporting decision-making on plant operation based on human reliability analysis with fuzzy integral, Proc. of the 2nd Int. Conf. on Fuzzy Logic and Neural Networks, Iizuka, 2, 841–845.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1968). Probability measures of fuzzy events, J. Math. Analysis and Appl., 23, 421–427.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kerre, E., Onisawa, T., Cappelle, B., Gazdik, I. (1998). Reliability. In: Słowiński, R. (eds) Fuzzy Sets in Decision Analysis, Operations Research and Statistics. The Handbooks of Fuzzy Sets Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5645-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5645-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7583-8

  • Online ISBN: 978-1-4615-5645-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics