Skip to main content

Discovering Structure in Finance Using Independent Component Analysis

  • Chapter

Part of the book series: Advances in Computational Management Science ((AICM,volume 2))

Abstract

Independent component analysis is a new signal processing technique. In this paper we apply it to a portfolio of Japanese stock price returns over three years of daily data and compare the results obtained using principal component analysis. The results indicate that the independent components fall into two categories, (i) infrequent but large shocks (responsible for the major changes in the stock prices), and (ii) frequent but rather small fluctuations (contributing little to the overall level of the stocks). The small number of major shocks indicate turning points in the time series and when used to reconstruct the stock prices, give good results in terms of morphology. In contrast, when using shocks derived from principal components instead of independent components, the reconstructed price does not show the same results at all. Independent component analysis is shown to be a potentially powerful method of analysing and understanding driving mechanisms in financial time series.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari S. (1998). Natural gradient works efficiently in learning, Neural Computation 10(sn2): 251–276.

    Article  Google Scholar 

  • Amari S., Cichocki A. and Yang H. (1996). A new learning algorithm for blind signal separation, in G. Tesauro, D. S. Touretzky and T. K. Leen (eds), Advances in Neural Information Processing Systems 8 (NIPS*95), The MIT Press, Cambridge, MA, pp. 757–76

    Google Scholar 

  • Baram Y. and Roth Z. (1995). Forecasting by density shaping using neural networks, Proceedings of the IEEE/IAFE 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr), IEEE Service Center, Piscataway, NJ.

    Google Scholar 

  • Bell A. and Sejnowski T. (1995). An information maximization approach to blind separation and blind deconvolution, Neural Computation 7: 1129–1159.

    Article  Google Scholar 

  • Belouchrani A., Abed Meraim K., Cardoso J. and Moulines E. (1997). A blind source separation technique based on second order statistics, IEEE Transiton S.P. 45(2): 434–44.

    Article  Google Scholar 

  • Bogner R. E. (1992). Blind separation of sources, Technical Report 4559, Defence Research Agency, Malvern.

    Google Scholar 

  • Burel G. (1992). Blind separation of sources: a nonlinear neural algorithm, Neural Networks 5: 937–947.

    Article  Google Scholar 

  • Cardoso J. (1989). Source separation using higher order moments, International Conference on Acoustics, Speech and Signal Processing, pp. 2109–2112.

    Google Scholar 

  • Cardoso J. and Laheld B. (1996). Equivariant adaptive source separation, IEEE Trans. Signal Processing.

    Google Scholar 

  • Cardoso J. and Souloumiac A. (1993). Blind beamforming for non-Gaussian signals, IEE Proc. F 140(6): 771–774.

    Google Scholar 

  • Chin E. and Weigend A. S. (1998). Asset allocation: An independent component analysis, Technical report, Information Systems Department, Leonard N. Stern School of Business, New York University.

    Google Scholar 

  • Choi S., Liu R. and Cichocki A. (1998). A spurious equilibria-free learning algorithm for the blind separation of non-zero skewness signals, Neural Processing Letters 7: 1–8.

    Article  Google Scholar 

  • Cichocki A. and Moszczyński L. (1992). New learning algorithm for blind separation of sources, Electronics Letters 28(21): 1986–1987.

    Article  Google Scholar 

  • Cichocki A., Unbehauen R. and Rummert E.(1994). Robust learning algorithm for blind separation of signals, Electronics Letters 30(17): 1386–1387.

    Article  Google Scholar 

  • Comon P. (1994). Independent component analysis — a new concept?, Signal Processing 36(3): 287–314.

    Article  Google Scholar 

  • Girolami M. and Fyfe C. (1997). An extended exploratory projection pursuit network with linear and nonlinear anti-hebbian connections applied to the cocktail party problem, Neural Networks 10(9): 1607–1618.

    Article  Google Scholar 

  • Herault J. and Jutten C. (1986). Space or time adaptive signal processing by neural network models, in J. S. Denker (ed.), Neural Networks for Computing. Proceedings of MP Conference, American Institute of Physics, New York, pp 206–211.

    Google Scholar 

  • Hyvärinen A. (1996). Simple one-unit algorithms for blind source separation and blind deconvolution, Progress in Neural Information Processing ICONIP’96, Vol. 2, Springer, pp. 1201–1206.

    Google Scholar 

  • Jutten C. and Herault J. (1991). Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing 24: 1–20.

    Article  Google Scholar 

  • Jutten C., Nguyen Thi H., Dijkstra E., Vittoz E. and Caelen J. (1991). Blind separation of sources, an algorithm for separation of convolutive mixtures, Proceedings of Int. Workshop on High Order Statistics, Chamrousse (France), pp. 273–276.

    Google Scholar 

  • Karhunen J. (1996). Neural approaches to independent component analysis and source separation, Proceedings of 4th European Symp.on Artificial Neural Networks (ESANN’96), Bruges, Belgium, pp. 249–266.

    Google Scholar 

  • Lin J. K., Grier D. G. and Cowan J. D. (1997). Faithful representation of separable distributions, Neural Computation 9: 1305–1320.

    Article  Google Scholar 

  • Moody J. E. and Wu L. (1996). What is the ‘true price’? — State space models for high frequency financial data, Progress in Neural Information Processing (ICONIP’96), Springer, Berlin, pp. 697–704.

    Google Scholar 

  • Moody J. E. and Wu L. (1997a). What is the ‘true price’? — State space models for high frequency FX data, in A. S. Weigend, Y. S. Abu-Mostafa and A.-P. N. Refenes (eds), Decision Technologies for Financial Engineering (Proceedings of the Fourth International Conference on Neural Networks in the Capital Markets, NNCM-96), World Scientific, Singapore, pp. 346–358.

    Google Scholar 

  • Moody J. E. and Wu L. (1997b). What is the ‘true price’? — State space models for high frequency FX data, Proceedings of the IEEE/IAFE 1997 Conference on Computational Intelligence for Financial Engineering (CIFEr), IEEE Service Center, Piscataway, NJ, pp. 150–156.

    Google Scholar 

  • Nguyen Thi H.-L. and Jutten C. (1995). Blind source separation for convolutive mixtures, Signal Processing 45(2): 209–229.

    Article  Google Scholar 

  • Oja E. and Karhunen J. (1995). Signal separation by nonlinear hebbian learning, in M. P.et al. (ed.), Computational Intelligence—A Dynamic System Perspective, IEEE Press, New York, NY, pp. 83–97.

    Google Scholar 

  • Parra L., Spence C. and de Vries B. (1997). Convolutive source separation and signal modeling with ML, International Symposium on Intelligent Systems (ISIS’97), University of Reggio Calabria, Italy.

    Google Scholar 

  • Pearlmutter B. A. and Parra L. C. (1997). Maximum likelihood blind source separation: A context-sensitive generalization of ICA, in M. C. Mozer, M. I. Jordan and T. Petsche (eds), Advances in Neural Information Processing Systems 9 (NIPS∗96), MIT Press, Cambridge, MA, pp. 613–619.

    Google Scholar 

  • Pope K. and Bogner R. (1996). Blind signal separation. I: Linear, instantaneous combinations, Digital Signal Processing 6: 5–16.

    Article  Google Scholar 

  • Tong L., Liu R., Soon V. and Huang Y. (1991). Indeterminacy and identifiability of blind identification, IEEE Trans. Circuits, Syst. 38(5): 499–509.

    Article  Google Scholar 

  • Tong L., Soon V. C., Huang Y. F. and Liu R. (1990). AMUSE: A new blind identification algorithm, International Conference on Acoustics, Speech and Signal Processing, pp. 1784–1787.

    Google Scholar 

  • Torkkola K. (1996). Blind separation of convolved sources based on information maximization, Proc. of the 1996 IEEE Workshop Neural Networks for Signal Processing 6 (NNSP96), IEEE Press, New York, NY.

    Google Scholar 

  • Utans J., Holt W. T. and Refenes A. N. (1997). Principal component analysis for modeling multi-currency portfolios, in A. S. Weigend, Y. S. Abu-Mostafa and A.-P. N. Refenes (eds), Decision Technologies for Financial Engineering (Proceedings of the Fourth International Conference on Neural Networks in the Capital Markets, NNCM-96), World Scientific, Singapore, pp. 359–368.

    Google Scholar 

  • Weinstein E., Feder M. and Oppenheim A. (1993). Multi-channel signal separation by de-correlation, IEEE Trans. Speech and Audio Processing 1(10): 405–413.

    Article  Google Scholar 

  • Wu L. and Moody J. (1997). Multi-effect decompositions for financial data modelling, in M. C. Mozer, M. I. Jordan and T. Petsche (eds), Advances in Neural Information Processing Systems 9 (NIPS∗96), MIT Press, Cambridge, MA, pp. 995–1001.

    Google Scholar 

  • Yang H., Amari S. and Cichocki A. (1998). Information-theoretic approach to blind separation of sources in non-linear mixture, Signal Processing 64(3): 291–300.

    Article  Google Scholar 

  • Yang H. H., Amari S. and Cichocki A. (1997). Information back-propagation for blind separation of sources in non-linear mixtures, IEEE International Conference on Neural Networks, Houston TX (ICNN’97), IEEE-Press, pp. 2141–2146.

    Google Scholar 

  • Yellin D. and Weinstein E. (1996). Multichannel signal separation: Methods and analysis, IEEE Transactions on Signal Processing 44: 106–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Back, A.D., Weigend, A.S. (1998). Discovering Structure in Finance Using Independent Component Analysis. In: Refenes, AP.N., Burgess, A.N., Moody, J.E. (eds) Decision Technologies for Computational Finance. Advances in Computational Management Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5625-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5625-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8309-3

  • Online ISBN: 978-1-4615-5625-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics