Skip to main content

Mirlog: A Logic for Multimedia Information Retrieval

  • Chapter
Information Retrieval: Uncertainty and Logics

Abstract

The development of retrieval models has been a major concern of the Information Retrieval (IR) community for the last two decades. As a result of this effort, we now have a few well established and widely known models, around which IR systems have been built and put at work on real applications. These models are based on different views of the retrieval process, but they all share two common features: first, they have been developed for and mostly applied only to textual documents; second, they adopt an indirect approach, based on statistical properties of key words, to the central problem of IR: capturing document contents. Both these features were dictated by the context in which the relevant research took place. As for the former, text was the only medium that could be automatically processed in an efficient way until a few years ago. As for the latter, the choice of a “surface” approach to capturing meaning was imposed by three factors: (1) the sheer size of major applications, where collections of thousands or millions of textual objects were addressed, thus making automatic extraction of document representations a necessity; (2) the lack of tools for automatically extracting more faithful renditions of document semantics; (3) the lack of theories that give a satisfactory explanation of what document semantics really is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of databases. Addison-Wesley, New York, NY.

    MATH  Google Scholar 

  • Anderson, A. R. and Belnap, N. D. (1975). Entailment — the logic of relevance and necessity, volume 1. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Belkin, N. J. (1981). Ineffable concepts in information retrieval. In Sparck Jones, K., editor, Information retrieval experiment, pages 44–58. Butterworths, London, UK.

    Google Scholar 

  • Belnap, N. D. (1977). How a computer should think. In Ryle, G., editor, Contemporary aspects of philosophy, pages 30–56. Oriel Press, Stocksfield, UK.

    Google Scholar 

  • Borgida, A. (1995). Description logics in data management. IEEE Transactions on Data and Knowledge Engineering, 7(5):671–682.

    Article  Google Scholar 

  • Borgida, A. and Patel-Schneider, P. F. (1994). A semantics and complete algorithm for subsumption in the CLASSIC description logic. Journal of Artificial Intelligence Research, 1:277–308.

    MATH  Google Scholar 

  • Buchheit, M., Donini, F. M., and Schaerf, A. (1993). Decidable reasoning in terminological knowledge representation systems. Journal of Artificial Intelligence Research, 1:109–138.

    MathSciNet  MATH  Google Scholar 

  • Buongarzoni, P., Meghini, C., Salis, R., Sebastiani, F., and Straccia, U. (1995). Logical and computational properties of the description logic MIRTL. In Borgida, A., Lenzerini, M., Nardi, D., and Nebel, B., editors, Proc. of DL-95, 4th International Workshop on Description Logics, pages 80–84, Roma, Italy.

    Google Scholar 

  • Chen, J. and Kundu, S. (1996). A sound and complete fuzzy logic system using Zadeh’s implication operator. In Ras, Z. W. and Maciek, M., editors, Proc. of the 9th Int. Sym. on Methodologies for Intelligent Systems (ISMIS-96), number 1079 in Lecture Notes In Artificial Intelligence, pages 233–242. Springer-Verlag.

    Google Scholar 

  • D’Agostino, M. and Mondadori, M. (1994). The taming of the cut. Classical refutations with analytical cut. Journal of Logic and Computation, 4(3):285–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, M., Longemann, G., and Loveland, D. (1962). A machine program for theorem proving. Journal of the ACM, 5(7):394–397.

    Article  MATH  Google Scholar 

  • Donini, F. M, Lenzerini, M., Nardi, D., and Nutt, W. (1991). The complexity of concept languages. In Proc. of KR-91, 2nd International Conference on Principles of Knowledge Representation and Reasoning, pages 151–162, Cambridge, MA.

    Google Scholar 

  • Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and Schaerf, A. (1992). Adding epistemic operators to concept languages. In KR-92, pages 342–353. Morgan Kaufmann.

    Google Scholar 

  • Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and Schaerf, A. (1994). Queries, rules and definitions as epistemic sentences in concept languages. In Proc. of the ECAI-94 Workshop on Knowledge Representation and Reasoning, number 810 in Lecture Notes in Computer Science, pages 113–132. Springer.

    Google Scholar 

  • Dubois, D. and Prade, H. (1980). Fuzzy Sets and Systems. Academic Press, New York, NJ.

    MATH  Google Scholar 

  • Dubois, D. and Prade, H. (1986). Possibilistic logic. In Gabbay, D. M. and Hogger, C. J., editors, Handbook of Logic in Artificial Intelligence, volume 3, pages 439–513. Clarendon Press, Dordrecht, NL.

    Google Scholar 

  • Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and coupled trees. Philosophical Studies, 29:149–168.

    Article  MathSciNet  Google Scholar 

  • Dunn, J. M. (1986). Relevance logic and entailment. In Gabbay, D. M. and Guenthner, F., editors, Handbook of Philosophical Logic, volume 3, pages 117–224. Reidel, Dordrecht, NL.

    Google Scholar 

  • Fitting, M. (1990). First-Order Logic and Automated Theorem Proving. Springer-Verlag.

    Google Scholar 

  • Gelfond, M. and Przymusinska, H. (1986). Negation as failure: careful closure procedure. Artificial Intelligence, 30:273–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Giunchiglia, F. and Sebastiani, R. (1996a). Buiding decision procedures for modal logics from propositional decision procedures — the case study of modal K. In Proc. of the 13th Conf. on Automated Deduction (CADE-96), number 449 in Lecture Notes In Artificial Intelligence. Springer-Verlag.

    Google Scholar 

  • Giunchiglia, F. and Sebastiani, R. (1996b). A SAT-based decision procedure for ALC. In Proc. of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-96).

    Google Scholar 

  • Haack, S. (1978). Philosophy of logics. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Halpern, J. Y. (1990). An analysis of first-order logics of probability. Artificial Intelligence, 46:311–350.

    Article  MathSciNet  MATH  Google Scholar 

  • Heinsohn, J. (1994). Probabilistic description logics. In de Mantara, R. L. and Pool, D., editors, Proc. of the 10th Conference on Uncertainty in Artificila Intelligence, pages 311–318.

    Google Scholar 

  • Hobbs, J. R. and Rosenschein, S. J. (1978). Making computational sense of Montague’s intensional logic. Artificial Intelligence, 9:287–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Hollunder, B. (1994). An alternative proof method for possibilistic logic and its application to terminological logics. In 10th Annual Conference on Uncertainty in Artificial Intelligence, Seattle, WA.

    Google Scholar 

  • Ishizuka, M. and Kanai, N. (1985). Prolog-ELF: incorporating fuzzy logic. In Proc. of the 9th Int. Joint Conf. on Artificial Intelligence (IJCA1-85), pages 701–703, Los Angeles, CA.

    Google Scholar 

  • Jäger, M. (1994). Probabilistic reasoning in terminological logics. In Proc. of KR-94, 5-th International Conference on Principles of Knowledge Representation and Reasoning, pages 305–316, Bonn, FRG.

    Google Scholar 

  • Lee, R. C. T. (1972). Fuzzy logic and the resolution principle. Journal of the ACM, 19(l):109–119.

    Article  MATH  Google Scholar 

  • Levesque, H. J. (1984). A logic of implicit and explicit belief. In Proc. of AAAI-84, 4th Conference of the American Association for Artificial Intelligence, pages 198–202, Austin, TX.

    Google Scholar 

  • Levesque, H. J. (1988). Logic and the complexity of reasoning. Journal of Philosophical Logic, 17:355–389.

    Article  MathSciNet  Google Scholar 

  • Łlukaszewicz, W. (1990). Nonmonotonic reasoning: formalization of commonsense reasoning. Ellis Horwood, Chichester, UK.

    Google Scholar 

  • Meghini, C., Sebastiani, F., and Straccia, U. (1997). The terminological image retrieval model. In Proc. of ICIAP′97, International Conference On Image Analysis And Processing, volume II, pages 156–163, Florence, I.

    Google Scholar 

  • Meghini, C., Sebastiani, F., Straccia, U., and Thanos, C. (1993). A model of information retrieval based on a terminological logic. In Proc. of SIGIR-93, 16th ACM International Conference on Research and Development in Information Retrieval, pages 298–307, Pittsburgh, PA.

    Google Scholar 

  • Meghini, C. and Straccia, U. (1996a). Information retrieval: Foundations of a description logic-based approach. Technical Report B4-18-06-96, Istituto di Elaborazione della Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy.

    Google Scholar 

  • Meghini, C. and Straccia, U. (1996b). A relevance terminological logic for information retrieval. In Proc. of S1GIR-96, 19th International Conference on Research and Development in Information Retrieval, pages 197–205, Zurich, Switzerland.

    Google Scholar 

  • Nelson, E. (1933). On three logical principles in intension. The Monist, 43.

    Google Scholar 

  • Patel-Schneider, P. F. (1986). A four-valued semantics for frame-based description languages. In Proc. of AAAI-86, 5th Conference of the American Association for Artificial Intelligence, pages 344–348, Philadelphia, PA.

    Google Scholar 

  • Patel-Schneider, P. F. (1987). A hybrid, decidable, logic-based knowledge representation system. Computational Intelligence, 3:64–77.

    Article  Google Scholar 

  • Patel-Schneider, P. F. (1989). A four-valued semantics for terminological logics. Artificial Intelligence, 38:319–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Reiter, R. (1978). On closed-world data bases. In Gallaire, H. and Minker, J., editors, Logic and Data Bases, pages 55–76. Plenum Press.

    Google Scholar 

  • Reiter, R. (1990). On asking what a database knows. In Lloyd, J., editor, Proc. of the Symposium on Computational Logic, pages 96–113. Springer Verlag.

    Google Scholar 

  • Saracevic, T. (1975). Relevance: a review of and a framework for thinking on the notion of information science. Journal of the American Society for Information Science, 26:321–343.

    Article  Google Scholar 

  • Schmidt-Schauss, M. and Smolka, G. (1991). Attributive concept descriptions with complements. Artificial Intelligence, 48:1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Sebastiani, F. (1994). A probabilistic terminological logic for modelling information retrieval. In Proc. of SIGIR-94, 17th ACM International Conference on Research and Development in Information Retrieval, pages 122–130, Dublin, IRL. Published by Springer Verlag, Heidelberg, FRG.

    Google Scholar 

  • Straccia, U. (1996). Document retrieval by relevance terminological logics. In Ruthven, I., editor, Proc. of MIRO-95, Workshop on Multimedia Information Retrieval, Glasgow, UK. Springer Verlag, Heidelberg, FRG.

    Google Scholar 

  • Straccia, U. (1997). A sequent calculus for reasoning in four-valued description logics. In Proc. of the Int. Conf. on Analytic Tableaux and Related Methods (TABLEAUX-97), Pont-à-Mousson, France.

    Google Scholar 

  • van Rijsbergen, C. (1979). Information Retrieval. Butterworths, London, GB, second edition.

    Google Scholar 

  • van Rijsbergen, C. J. (1989). Towards an information logic. In Proc. of SIGIR-89, 12th ACM International Conference on Research and Development in Information Retrieval, pages 77–86, Cambridge, MA.

    Google Scholar 

  • Wagner, G. (1991). Ex contradictione nihil sequitur. In Proc. of IJCAI-91, 12th Intemational Joint Conference on Artificial Intelligence, pages 538–543, Sidney, Australia.

    Google Scholar 

  • Yager, R. R. (1995). Fuzzy sets as a tool for modeling. In van Leeuwen, J., editor, Computer Science Today, number 1000 in Lecture Notes in Computer Science, pages 536–548. Springer-Verlag.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3):338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meghini, C., Sebastiani, F., Straccia, U. (1998). Mirlog: A Logic for Multimedia Information Retrieval. In: Crestani, F., Lalmas, M., van Rijsbergen, C.J. (eds) Information Retrieval: Uncertainty and Logics. The Kluwer International Series on Information Retrieval, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5617-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5617-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7570-8

  • Online ISBN: 978-1-4615-5617-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics