Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci AJ, Kramer R, Guidotti G, Cantiello HF. The multidrug-resistance (mdrl) gene product functions as an ATP channel. Proc Natl Acad Sci USA, 90: 312–316, 1993.
PubMed
CrossRef
CAS
Google Scholar
Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD. Active down-regulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res, 69: 1458–1469, 1991.
PubMed
CrossRef
CAS
Google Scholar
Arch JRS, Newsholme EA Activities and some properties of 5′-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochem J, 174: 965–977, 1978.
PubMed
CAS
Google Scholar
Balaban RS, Kantor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolites in the in vivo paced mammalian heart. Science, 232: 1121–1123, 1986.
PubMed
CrossRef
CAS
Google Scholar
Bardenheuer H, Schrader J. Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol, 250: H173–H180, 1986.
PubMed
CAS
Google Scholar
Bardenheuer H, Whelton B, Sparks HV, Jr. Adenosine release by the isolated guinea pig heart in response to isoproterenol, acetylcholine, and acidosis: the minimal role of vascular endothelium. Circ Res, 61: 594–600, 1987.
PubMed
CrossRef
CAS
Google Scholar
Becker BF, Gerlach E. Uric acid, the major catabolite of cardiac adenine nucleotides and adenosine, originates in the coronary endothelium. In: Topics and Perspectives in Adenosine Research, Gerlach E, Becker BF (eds.), Berlin: Springer, 1987, pp 209–221.
CrossRef
Google Scholar
Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Prog Cardiovasc Dis, 32: 73–97, 1989.
PubMed
CrossRef
CAS
Google Scholar
Belardinelli L, Shryock JC, Song Y, Wang D, Srinivas M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J, 9: 359–365, 1995.
PubMed
CAS
Google Scholar
Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol, 204: 317–322, 1963.
PubMed
CAS
Google Scholar
Beme RM. The role of adenosine in the regulation of coronary blood flow. Circ Res, 47: 807:813, 1980.
Google Scholar
Bontemps F, van den Berghe G, Hers HG. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Proc Natl Acad Sci USA, 80: 2829–2833, 1983.
PubMed
CrossRef
CAS
Google Scholar
Borst M, Schrader J. Adenine nucleotide release from isolated perfused guinea pig hearts and extracellular formation of adenosine. Circ Res, 68: 797–806, 1991.
PubMed
CrossRef
CAS
Google Scholar
Chagoya de Sanchez V. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms? Can J Physiol Pharmacol, 73: 339–355, 1995.
CrossRef
Google Scholar
Chance B, Leigh JS, Jr., Kent J, McCully K, Nioka S, Clark BJ, Maris JM, Graham T. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA, 83: 9458–9462, 1986.
PubMed
CrossRef
CAS
Google Scholar
De Jong JW. Partial purification and properties of rat-heart adenosine kinase. Arch Ini Physiol Biochim, 85: 557–569, 1977.
CrossRef
Google Scholar
Decking UKM, Arens S, Schlieper G, Schulze K, Schrader J. Dissociation between adenosine release, cardiac energy status and oxygen consumption in working guinea pig hearts. Am J Physiol 272: H371–H3H3 81, 1997.
PubMed
CAS
Google Scholar
Decking UKM, Schlieper G, Kroll K, Schrader J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res, 81: 154–164, 1997.
PubMed
CrossRef
CAS
Google Scholar
Deussen A, Bading B, Kelm M, Schrader J. Formation and salvage of adenosine by macrovascular endothelial cells. Am J Physiol 264: H692–H700, 1993.
PubMed
CAS
Google Scholar
Deussen A, Borst M, Kroll K, Schrader JKK. Formation of S-adenosylhomocysteine in the heart. II: A sensitive index for regional myocardial underperfusion. Circ Res, 63: 250–261, 1988.
PubMed
CrossRef
CAS
Google Scholar
Deussen A, Lloyd HGE, Schrader J. Contribution of S-adenosylhomocysteine to cardiac adenosine formation. J Mol Cell Cardiol, 21: 773–782, 1989.
PubMed
CrossRef
CAS
Google Scholar
Deussen A, Möser GH, Schrader J. Contribution of coronary endothelial cells to cardiac adenosine production. Pflügers Arch, 406: 608–614, 1986.
PubMed
CrossRef
CAS
Google Scholar
Drury AN, Szent-Györgi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol, 68: 213–237, 1929.
PubMed
CAS
Google Scholar
Gerlach E, Deuticke B, Dreisbach RH. Der Nucleotid-Abbau im Herzmuskel bei Sauerstoflmangel und seine mögliche Bedeutung für die Coronardurchblutung. Die Naturwissenschaften, 50: 228–229, 1963.
CrossRef
CAS
Google Scholar
Gorman MW, He M-X, Hall CS, Sparks HV. Inorganic phosphate as regulator of adenosine formation in isolated guinea pig hearts. Am J Physiol, 272: H913–H920, 1997.
PubMed
CAS
Google Scholar
Heineman FW, Balaban RS. Control of mitochondrial respiration in the heart in vivo. Ann Rev Physiol, 52: 523–542, 1990.
CrossRef
CAS
Google Scholar
Heusch G, Schulz R. Hibernating myocardium: a review. J Mol Cell Cardiol, 28: 2359–2372, 1996.
PubMed
CrossRef
CAS
Google Scholar
Hochachka PW. Defense strategies against hypoxia and hypothermia. Science, 231: 234–241, 1986.
PubMed
CrossRef
CAS
Google Scholar
Ko KR, Ngai AC, Winm, HR. Role of adenosine in regulation of regional cerebral blood flow in sensory cortex. Am J Physiol, 259: H1703–H1708, 1990.
PubMed
CAS
Google Scholar
Kroll K, Decking UKM, Dreikorn K, Schrader J. Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart. Circ Res, 73: 846–856, 1993.
PubMed
CrossRef
CAS
Google Scholar
Kroll K, Feigl EO. Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol, 249: H1176–H1187, 1985.
PubMed
CAS
Google Scholar
Kroll K, Martin GV. Steady-state catecholamine stimulation does not increase cytosolic adenosine in canine hearts. AmJ Physiol, 265: H503–H510, 1994.
Google Scholar
Kroll K, Schrader J, Piper HM, Henrich M. Release of adenosine and cyclic AMP from coronary endothelium in isolated guinea pig hearts: relation to coronary flow. Circ Res, 60: 659–665, 1987.
PubMed
CrossRef
CAS
Google Scholar
Kroll K, Stepp DW. Adenosine kinetics in canine coronary circulation. Am J Physiol, 270: H1469–H1483, 1996.
PubMed
CAS
Google Scholar
Lasley RD, Mentzer RMJ. Protective effects of adenosine in the reversibly injured heart Ann Thorac Surg, 60: 843–846, 1995.
PubMed
CrossRef
CAS
Google Scholar
Li JM, Fenton RA, Cutler BS, Dobson JG, Jr.. Adenosine enhances nitric oxide production by vascular endothelial cells. Am J Physiol, 269: C519–C523, 1995.
PubMed
CAS
Google Scholar
Linden J. Cloned adenosine A3 receptors: Pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15: 298–306, 1994.
PubMed
CrossRef
CAS
Google Scholar
Marban E. Myocardial stunning and hibernation. Circulation, 83: 681–688, 1991.
PubMed
CrossRef
CAS
Google Scholar
Mattig S, Gruber M, Deussen A. Intracellular concentration and transmembraneous gradient of adenosine in macrovascular endothelial cells. Pflügers Arch, 431: R128, 1996 (Abstract).
Google Scholar
Mistry G, Drummond, GI. Adenosine metabolism in microvessels from heart and brain. J Mol Cell Cardiol, 18: 13–22, 1986.
PubMed
CrossRef
CAS
Google Scholar
Mustafa SJ, Marala RB, Abebe W, Jeansonne N, Olanrewaju HA, Hussain T. Coronary adenosine receptors: subtypes, localization, and function. In: Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, Belardinelli L, Pelleg A (eds.), Boston: Kluwer, 1995, pp 229–239.
CrossRef
Google Scholar
Nees S, Herzog V, Becker BF, Bück M, Des Rosiers Ch, Gerlach E. The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol, 80: 515–519, 1985.
PubMed
CrossRef
CAS
Google Scholar
Ning X-H, He M-X, Gorman MW, Romig GD, Sparks HV. Adenosine formation and energy status in isolated guinea pig hearts perfused with erythrocytes. Am J Physiol, 262: H1075–H1080, 1992.
PubMed
CAS
Google Scholar
Ogawa S, Menon RS, Tank DW, Kim S-G, Merkle H, Ellermann JM, Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J, 64: 803–812, 1993.
PubMed
CrossRef
CAS
Google Scholar
Olah ME, Stiles GL. Adenosine receptor subtypes: Characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol, 35: 581–606, 1995.
PubMed
CrossRef
CAS
Google Scholar
Olsson RA A brief history of adenosine research. Pharm Pharmacol Lett, 2: 3–4, 1992.
CAS
Google Scholar
Olsson RA, Pearson JD. Cardiovascular Purinoceptors. Physiol Rev 70: 761–845, 1990.
PubMed
CAS
Google Scholar
Pak MA, Haas HL, Decking UKM, Schrader J. Inhibition of adenosine-kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology, 33: 1049–1053, 1994.
PubMed
CrossRef
CAS
Google Scholar
Palella TD, Andres CM, Fox IH. Human placental adenosine kinase. Kinetic mechanism and inhibition. J Biol Chem 255: 5264–5269, 1980.
PubMed
CAS
Google Scholar
Raichle ME. Circulatory and metabolic correlates of brain function in normal humans. In: Handbook of Physiology: The nervous system, Baltimore: Williams & Wilkens, 1987, pp 643–674.
Google Scholar
Rongen GA, Floras JS, Lenders JW, Thien T, Smits P. Cardiovascular pharmacology of purines. Clin Sci, 92: 13–24, 1997.
PubMed
CAS
Google Scholar
Schrader J. Adenosine: A homeostatic metabolite in cardiac energy metabolism. Circulation, 81: 389–391, 1990.
PubMed
CrossRef
CAS
Google Scholar
Schrader J, Gerlach E. Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Arch, 267: 129–135, 1976.
CrossRef
Google Scholar
Schrader J, Haddy FJ, Gerlach E. Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflügers Arch, 369: 1–6, 1977.
PubMed
CrossRef
CAS
Google Scholar
Schumacker PT, Chandel M, Agusti AGN. Oxygen conformance of cellular respiration in hepatocytes. Am J Physiol, 265: L395–L402, 1993.
PubMed
CAS
Google Scholar
Shen WK, Kurachi Y. Mechanisms of adenosine-mediated actions on cellular and clinical cardiac electrophysiology. Mayo Clin Proc, 70: 274–291, 1995.
PubMed
CrossRef
CAS
Google Scholar
Skladanowski AC, Smolenski RT, Tavenier M, De Jong JW, Yacoub MH, Seymour A-ML. Soluble forms of 5′-nucleotidase in rat and human heart. Am J Physiol 270: H1493–H1500, 1996.
PubMed
CAS
Google Scholar
Smolenski RT, Schrader J, De Groot H, Deussen A. Oxygen partial pressure and free intracellular adenosine of isolated cardiomyocytes. Am J Physiol, 260: C708–C714, 1991.
PubMed
CAS
Google Scholar
Snyder FF, Lukey T. Kinetic considerations for the regulation of adenosine and deoxyadenosine metabolism in mouse and human tissues based on a thymocyte model. Biochim Biophys Acta, 696: 299–307, 1982.
PubMed
CrossRef
CAS
Google Scholar
Sobrevía L, Jarvis SM, Yudilevich DL. Adenosine transport in cultured human umbilical vein endothelial cells is reduced in diabetes. Am J Physiol, 267: C39–C47, 1994.
PubMed
Google Scholar
Sonntag M, Deussen A, Schultz J, Loncar R, Hort W, Schrader J. Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative / glycolytic enzyme activity. Pflügers Arch, 432: 439–450, 1996.
PubMed
CrossRef
CAS
Google Scholar
Sparks HV, Jr., Bardenheuer H. Regulation of adenosine formation by the heart. Circ Res, 58: 193–201, 1986.
PubMed
CrossRef
CAS
Google Scholar
Stepp DW, Van Bibber R, Kroll K. Quantitative relation between interstitial adenosine concentration and coronary blood flow. Circ Res, 79: 601–610, 1996.
PubMed
CrossRef
CAS
Google Scholar
Stumpe T, Schrader J. Phosphorylation potential, adenosine formation, and critical PO2 in stimulated rat cardiomyocytes. Am J Physiol, 273: H756–H766, 1997.
PubMed
CAS
Google Scholar
Sylvén C. Mechanisms of pain in angina pectoris — A critical review of the adenosine hypothesis. Cardiovasc Drugs Ther, 7: 745–759, 1993.
PubMed
CrossRef
Google Scholar