Skip to main content

Recent Advances in Cardiac Adenosine Metabolism

  • Chapter
  • 51 Accesses

Part of the Developments in Cardiovascular Medicine book series (DICM,volume 209)

Summary

Adenosine can be formed intracellularly (cytosolic 5′-nucleotidase and SAH-hydrolase) and extracellularly (ecto-5′-nucleotidase). The major source for cardiac adenosine formation is the intracellular dephosphorylation of AMR More than 90% of the adenosine formed is rephosphorylated to AMP via adenosine kinase (1.95 nmol/min/g) and only a small fraction (0.06 nmol/min/g) escapes the metabolic cycle between AMP and adenosine and is released into the vascular space. Therefore, intracellular adenosine formation exceeds by far adenosine release into the extracellular space. However, since the intracellular adenosine concentration is normally very low and adenosine is continuously formed extracellularly from released adenine nucleotides, the concentration gradient for adenosine in the normoxic heart is from extracellular to intracellular. This gradient is rapidly reversed during hypoxia or pharmacological inhibition of adenosine kinase.

Keywords

  • Coronary Blood Flow
  • Adenine Nucleotide
  • Adenosine Kinase
  • Adenosine Release
  • Adenosine Metabolism

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-5603-9_19
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4615-5603-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   419.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham EH, Prat AG, Gerweck L, Seneveratne T, Arceci AJ, Kramer R, Guidotti G, Cantiello HF. The multidrug-resistance (mdrl) gene product functions as an ATP channel. Proc Natl Acad Sci USA, 90: 312–316, 1993.

    PubMed  CrossRef  CAS  Google Scholar 

  • Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD. Active down-regulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res, 69: 1458–1469, 1991.

    PubMed  CrossRef  CAS  Google Scholar 

  • Arch JRS, Newsholme EA Activities and some properties of 5′-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochem J, 174: 965–977, 1978.

    PubMed  CAS  Google Scholar 

  • Balaban RS, Kantor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolites in the in vivo paced mammalian heart. Science, 232: 1121–1123, 1986.

    PubMed  CrossRef  CAS  Google Scholar 

  • Bardenheuer H, Schrader J. Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol, 250: H173–H180, 1986.

    PubMed  CAS  Google Scholar 

  • Bardenheuer H, Whelton B, Sparks HV, Jr. Adenosine release by the isolated guinea pig heart in response to isoproterenol, acetylcholine, and acidosis: the minimal role of vascular endothelium. Circ Res, 61: 594–600, 1987.

    PubMed  CrossRef  CAS  Google Scholar 

  • Becker BF, Gerlach E. Uric acid, the major catabolite of cardiac adenine nucleotides and adenosine, originates in the coronary endothelium. In: Topics and Perspectives in Adenosine Research, Gerlach E, Becker BF (eds.), Berlin: Springer, 1987, pp 209–221.

    CrossRef  Google Scholar 

  • Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Prog Cardiovasc Dis, 32: 73–97, 1989.

    PubMed  CrossRef  CAS  Google Scholar 

  • Belardinelli L, Shryock JC, Song Y, Wang D, Srinivas M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J, 9: 359–365, 1995.

    PubMed  CAS  Google Scholar 

  • Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol, 204: 317–322, 1963.

    PubMed  CAS  Google Scholar 

  • Beme RM. The role of adenosine in the regulation of coronary blood flow. Circ Res, 47: 807:813, 1980.

    Google Scholar 

  • Bontemps F, van den Berghe G, Hers HG. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Proc Natl Acad Sci USA, 80: 2829–2833, 1983.

    PubMed  CrossRef  CAS  Google Scholar 

  • Borst M, Schrader J. Adenine nucleotide release from isolated perfused guinea pig hearts and extracellular formation of adenosine. Circ Res, 68: 797–806, 1991.

    PubMed  CrossRef  CAS  Google Scholar 

  • Chagoya de Sanchez V. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms? Can J Physiol Pharmacol, 73: 339–355, 1995.

    CrossRef  Google Scholar 

  • Chance B, Leigh JS, Jr., Kent J, McCully K, Nioka S, Clark BJ, Maris JM, Graham T. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA, 83: 9458–9462, 1986.

    PubMed  CrossRef  CAS  Google Scholar 

  • De Jong JW. Partial purification and properties of rat-heart adenosine kinase. Arch Ini Physiol Biochim, 85: 557–569, 1977.

    CrossRef  Google Scholar 

  • Decking UKM, Arens S, Schlieper G, Schulze K, Schrader J. Dissociation between adenosine release, cardiac energy status and oxygen consumption in working guinea pig hearts. Am J Physiol 272: H371–H3H3 81, 1997.

    PubMed  CAS  Google Scholar 

  • Decking UKM, Schlieper G, Kroll K, Schrader J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res, 81: 154–164, 1997.

    PubMed  CrossRef  CAS  Google Scholar 

  • Deussen A, Bading B, Kelm M, Schrader J. Formation and salvage of adenosine by macrovascular endothelial cells. Am J Physiol 264: H692–H700, 1993.

    PubMed  CAS  Google Scholar 

  • Deussen A, Borst M, Kroll K, Schrader JKK. Formation of S-adenosylhomocysteine in the heart. II: A sensitive index for regional myocardial underperfusion. Circ Res, 63: 250–261, 1988.

    PubMed  CrossRef  CAS  Google Scholar 

  • Deussen A, Lloyd HGE, Schrader J. Contribution of S-adenosylhomocysteine to cardiac adenosine formation. J Mol Cell Cardiol, 21: 773–782, 1989.

    PubMed  CrossRef  CAS  Google Scholar 

  • Deussen A, Möser GH, Schrader J. Contribution of coronary endothelial cells to cardiac adenosine production. Pflügers Arch, 406: 608–614, 1986.

    PubMed  CrossRef  CAS  Google Scholar 

  • Drury AN, Szent-Györgi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol, 68: 213–237, 1929.

    PubMed  CAS  Google Scholar 

  • Gerlach E, Deuticke B, Dreisbach RH. Der Nucleotid-Abbau im Herzmuskel bei Sauerstoflmangel und seine mögliche Bedeutung für die Coronardurchblutung. Die Naturwissenschaften, 50: 228–229, 1963.

    CrossRef  CAS  Google Scholar 

  • Gorman MW, He M-X, Hall CS, Sparks HV. Inorganic phosphate as regulator of adenosine formation in isolated guinea pig hearts. Am J Physiol, 272: H913–H920, 1997.

    PubMed  CAS  Google Scholar 

  • Heineman FW, Balaban RS. Control of mitochondrial respiration in the heart in vivo. Ann Rev Physiol, 52: 523–542, 1990.

    CrossRef  CAS  Google Scholar 

  • Heusch G, Schulz R. Hibernating myocardium: a review. J Mol Cell Cardiol, 28: 2359–2372, 1996.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hochachka PW. Defense strategies against hypoxia and hypothermia. Science, 231: 234–241, 1986.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ko KR, Ngai AC, Winm, HR. Role of adenosine in regulation of regional cerebral blood flow in sensory cortex. Am J Physiol, 259: H1703–H1708, 1990.

    PubMed  CAS  Google Scholar 

  • Kroll K, Decking UKM, Dreikorn K, Schrader J. Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart. Circ Res, 73: 846–856, 1993.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kroll K, Feigl EO. Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol, 249: H1176–H1187, 1985.

    PubMed  CAS  Google Scholar 

  • Kroll K, Martin GV. Steady-state catecholamine stimulation does not increase cytosolic adenosine in canine hearts. AmJ Physiol, 265: H503–H510, 1994.

    Google Scholar 

  • Kroll K, Schrader J, Piper HM, Henrich M. Release of adenosine and cyclic AMP from coronary endothelium in isolated guinea pig hearts: relation to coronary flow. Circ Res, 60: 659–665, 1987.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kroll K, Stepp DW. Adenosine kinetics in canine coronary circulation. Am J Physiol, 270: H1469–H1483, 1996.

    PubMed  CAS  Google Scholar 

  • Lasley RD, Mentzer RMJ. Protective effects of adenosine in the reversibly injured heart Ann Thorac Surg, 60: 843–846, 1995.

    PubMed  CrossRef  CAS  Google Scholar 

  • Li JM, Fenton RA, Cutler BS, Dobson JG, Jr.. Adenosine enhances nitric oxide production by vascular endothelial cells. Am J Physiol, 269: C519–C523, 1995.

    PubMed  CAS  Google Scholar 

  • Linden J. Cloned adenosine A3 receptors: Pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15: 298–306, 1994.

    PubMed  CrossRef  CAS  Google Scholar 

  • Marban E. Myocardial stunning and hibernation. Circulation, 83: 681–688, 1991.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mattig S, Gruber M, Deussen A. Intracellular concentration and transmembraneous gradient of adenosine in macrovascular endothelial cells. Pflügers Arch, 431: R128, 1996 (Abstract).

    Google Scholar 

  • Mistry G, Drummond, GI. Adenosine metabolism in microvessels from heart and brain. J Mol Cell Cardiol, 18: 13–22, 1986.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mustafa SJ, Marala RB, Abebe W, Jeansonne N, Olanrewaju HA, Hussain T. Coronary adenosine receptors: subtypes, localization, and function. In: Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, Belardinelli L, Pelleg A (eds.), Boston: Kluwer, 1995, pp 229–239.

    CrossRef  Google Scholar 

  • Nees S, Herzog V, Becker BF, Bück M, Des Rosiers Ch, Gerlach E. The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol, 80: 515–519, 1985.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ning X-H, He M-X, Gorman MW, Romig GD, Sparks HV. Adenosine formation and energy status in isolated guinea pig hearts perfused with erythrocytes. Am J Physiol, 262: H1075–H1080, 1992.

    PubMed  CAS  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim S-G, Merkle H, Ellermann JM, Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J, 64: 803–812, 1993.

    PubMed  CrossRef  CAS  Google Scholar 

  • Olah ME, Stiles GL. Adenosine receptor subtypes: Characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol, 35: 581–606, 1995.

    PubMed  CrossRef  CAS  Google Scholar 

  • Olsson RA A brief history of adenosine research. Pharm Pharmacol Lett, 2: 3–4, 1992.

    CAS  Google Scholar 

  • Olsson RA, Pearson JD. Cardiovascular Purinoceptors. Physiol Rev 70: 761–845, 1990.

    PubMed  CAS  Google Scholar 

  • Pak MA, Haas HL, Decking UKM, Schrader J. Inhibition of adenosine-kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology, 33: 1049–1053, 1994.

    PubMed  CrossRef  CAS  Google Scholar 

  • Palella TD, Andres CM, Fox IH. Human placental adenosine kinase. Kinetic mechanism and inhibition. J Biol Chem 255: 5264–5269, 1980.

    PubMed  CAS  Google Scholar 

  • Raichle ME. Circulatory and metabolic correlates of brain function in normal humans. In: Handbook of Physiology: The nervous system, Baltimore: Williams & Wilkens, 1987, pp 643–674.

    Google Scholar 

  • Rongen GA, Floras JS, Lenders JW, Thien T, Smits P. Cardiovascular pharmacology of purines. Clin Sci, 92: 13–24, 1997.

    PubMed  CAS  Google Scholar 

  • Schrader J. Adenosine: A homeostatic metabolite in cardiac energy metabolism. Circulation, 81: 389–391, 1990.

    PubMed  CrossRef  CAS  Google Scholar 

  • Schrader J, Gerlach E. Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Arch, 267: 129–135, 1976.

    CrossRef  Google Scholar 

  • Schrader J, Haddy FJ, Gerlach E. Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflügers Arch, 369: 1–6, 1977.

    PubMed  CrossRef  CAS  Google Scholar 

  • Schumacker PT, Chandel M, Agusti AGN. Oxygen conformance of cellular respiration in hepatocytes. Am J Physiol, 265: L395–L402, 1993.

    PubMed  CAS  Google Scholar 

  • Shen WK, Kurachi Y. Mechanisms of adenosine-mediated actions on cellular and clinical cardiac electrophysiology. Mayo Clin Proc, 70: 274–291, 1995.

    PubMed  CrossRef  CAS  Google Scholar 

  • Skladanowski AC, Smolenski RT, Tavenier M, De Jong JW, Yacoub MH, Seymour A-ML. Soluble forms of 5′-nucleotidase in rat and human heart. Am J Physiol 270: H1493–H1500, 1996.

    PubMed  CAS  Google Scholar 

  • Smolenski RT, Schrader J, De Groot H, Deussen A. Oxygen partial pressure and free intracellular adenosine of isolated cardiomyocytes. Am J Physiol, 260: C708–C714, 1991.

    PubMed  CAS  Google Scholar 

  • Snyder FF, Lukey T. Kinetic considerations for the regulation of adenosine and deoxyadenosine metabolism in mouse and human tissues based on a thymocyte model. Biochim Biophys Acta, 696: 299–307, 1982.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sobrevía L, Jarvis SM, Yudilevich DL. Adenosine transport in cultured human umbilical vein endothelial cells is reduced in diabetes. Am J Physiol, 267: C39–C47, 1994.

    PubMed  Google Scholar 

  • Sonntag M, Deussen A, Schultz J, Loncar R, Hort W, Schrader J. Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative / glycolytic enzyme activity. Pflügers Arch, 432: 439–450, 1996.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sparks HV, Jr., Bardenheuer H. Regulation of adenosine formation by the heart. Circ Res, 58: 193–201, 1986.

    PubMed  CrossRef  CAS  Google Scholar 

  • Stepp DW, Van Bibber R, Kroll K. Quantitative relation between interstitial adenosine concentration and coronary blood flow. Circ Res, 79: 601–610, 1996.

    PubMed  CrossRef  CAS  Google Scholar 

  • Stumpe T, Schrader J. Phosphorylation potential, adenosine formation, and critical PO2 in stimulated rat cardiomyocytes. Am J Physiol, 273: H756–H766, 1997.

    PubMed  CAS  Google Scholar 

  • Sylvén C. Mechanisms of pain in angina pectoris — A critical review of the adenosine hypothesis. Cardiovasc Drugs Ther, 7: 745–759, 1993.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schrader, J., Decking, U., Stumpe, T. (1998). Recent Advances in Cardiac Adenosine Metabolism. In: Burnstock, G., Dobson, J.G., Liang, B.T., Linden, J. (eds) Cardiovascular Biology of Purines. Developments in Cardiovascular Medicine, vol 209. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5603-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5603-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7563-0

  • Online ISBN: 978-1-4615-5603-9

  • eBook Packages: Springer Book Archive