Skip to main content
  • 125 Accesses

Abstract

Estimation of cycle time is fairly straightforward for an existing CPU design where low-level tools, called timing estimators or verifiers, can simulate path delay times and identify critical paths from the netlist. However estimation of clock cycle time for a design in progress, or an alternative for which no implementation exists, is much more difficult. In practice, designers determine a target cycle time and estimate the actual cycle time by examining what they believe to be the critical paths in the design. So, designers rely heavily on their experience and then do whatever is needed to try to achieve their clock cycle target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.G. Hsi, S.G. Tucker, “Figures of Merit for System Path Time Estimation:, Proceedings of the IEEE ICCD, 1990, pp. 49–55.

    Google Scholar 

  2. P.N. Jouppi, S. Wilton, “Tradeoffs in Two-Level On-Chip Caching”, 21st Annual International Symposium on Computer Architecture, April 1994, pp. 34–45.

    Google Scholar 

  3. H.B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley Publishing Company Inc., 1990.

    Google Scholar 

  4. G. Sai-Halasz, “Performance Trends in High-End Processors”, Proceedings of the IEEE, Vol. 83, N° 1, January 1995, pp. 20

    Article  Google Scholar 

  5. L. Gwennap, “Exponential’s PowerPC Blazes”, Microprocessor Report, October 28, 1996.

    Google Scholar 

  6. L.A. Lev, A. Charnas, M. Tremblay, A.R. Datal, B.A. Frederick, C.R. Srivatsa, D. Greenhill, D.L. Wendell, D.D. Pham, E. Anderson, H.K. Hingarh, I. Razzack, J.M. Kaku, K. Shin, M.E. Levitt, M. Allen, P.A. Ferolito, R.L. Bartolotti, R.K. Yu, R.J. Melanson, S.I. Shah, S. Nguyen, S.S. Mitra, V. Reddy, V. Ganesan, W.J de Lange, “A 64-b Microprocessor with Multimedia support”, IEEE Journal of Solid-State Circuits, Vol. 30, N° 11, November 1995, pp. 1227–1235.

    Article  Google Scholar 

  7. IBM World Wide Website: PowerPC White Papers: http://www.austin.ibm.com/tech/

    Google Scholar 

  8. Motorola PowerPC Home Page: http://www.mot.com/PowerPC/

    Google Scholar 

  9. G. Sai-Halasz, “Directions in Future High-End Processors”, Proceedings of the IEEE ICCD, 1992, pp. 230–233.

    Google Scholar 

  10. C. W. Koburger, W.F. Clark, J.W. Adkisson, E. Adler, P.E. Bakeman, A.S. Bergendahl, A.B. Botula, W. Chang, B. Davari, J.H. Givens, H.H. Hansen, S.J. holmes, D.V. Horak, C.H. Lam, J.B. Lasky, S.E. Luce, R.W. Mann, G.L. Miles, J.S. Nakos, E.J. Nowak, G. Shahidi, Y. Taur, F.R. White, M.R. Wordeman, “A Half-Micron CMOS Logic Generation”, IBM Journal of Research and Development, Vol. 39, N° 1/2, January/March 1995, pp. 215–227.

    Article  Google Scholar 

  11. A. Deutsch, G.V. Kopcsay, V.A. Ranieri, J.K. Cataldo, E.A. Galligan, W.S. Graham, R.P. McGouey, S.L. Nunes, J.R. Paraszczak, J.J. Ritsko, R.J. Serino, D.Y. Shih, J.S. Wilczynski, “High-Speed Signal Propagation on Lossy Transmission Lines”, IBM Journal of Research and Development, Vol. 34, N° 4, July 1990, pp. 601–615.

    Article  Google Scholar 

  12. M. Shoji, High-Speed Digital Circuits, Addison-Wesley, 1996.

    Google Scholar 

  13. B.A. Gieseke, R.L. Allmon, D.W. Bailey, B.J. Benschneider, S.M. Britton, J.D. Clouser, H.R. Fair, J.A. Farrell, M.K. Gowan, C.L. Houghton, J.B. Keller, T.H. Lee, D.L. Leibholz, S.C. Lowell, M.D. Matson, R.J. Matthew, V. Peng, M.D. Quinn, D.A. Priore, M.J. Smith, K.E. Wilcox, “A 600 MHz Superscalar RISC Microprocessor with Out-Of-Order Execution”, IEEE International Solid-State Circuits Conference, 1997, pp. 176–177.

    Google Scholar 

  14. W.C. Elmore, “The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers”, Journal of Applied Physics, January 1948, pp. 55–63.

    Google Scholar 

  15. T. Sakurai, “Closed-Form Expressions for Interconnection Delay, Coupling, and Crosstalk in VLSI’s”, IEEE Transactions on Electron Devices, Vol. 40, n° 1, January 1993, pp. 118–124.

    Article  MathSciNet  Google Scholar 

  16. T. Sakurai, “Approximation of wiring delay in MOSFET LSI”, IEEE Journal of Solid-State Circuits, Vol. SC-18, August 1983, pp. 418–426.

    Article  Google Scholar 

  17. C.G. Lin-Hendel, “Accurate Interconnect Modeling for High Frequency LSI/VLSI Circuits and Systems”, Proceedings of the IEEE International Conference on Computer Design, 1990, pp. 434–442.

    Google Scholar 

  18. R.K. Watts, Submicron Integrated Circuits, John Wiley & Sons Inc., 1989.

    Google Scholar 

  19. A. Kahng, S. Muddu, “An Analytical Delay Model for RLC Interconnects”, IEEE Proceedings of International Symposium on Circuits and Systems, 1996, pp. 237–240.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geuskens, B., Rose, K. (1998). Cycle Time Estimation Model. In: Modeling Microprocessor Performance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5561-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5561-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7543-2

  • Online ISBN: 978-1-4615-5561-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics