Skip to main content

Calcium ion regulation of muscle contraction: The regulatory role of troponin T

  • Chapter
  • 294 Accesses

Part of the book series: Molecular and Cellular Biochemistry ((DMCB,volume 31))

Abstract

The relaxation and contraction in vertebrate skeletal muscle are regulated by Ca2+ through troponin and tropomyosin, which are located in the thin filament. Troponin is composed of three components, troponins C, I and T. In this review article, the Ca2+-regulatory mechanism is discussed with particular reference to the regulatory properties of troponin T. (Mol Cell Biochem 190: 33-38, 1999)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebashi S: Third component participating in the superprecipitation of ‘natural actomyosin’. Nature 200: 1010, 1963

    Article  PubMed  CAS  Google Scholar 

  2. Ebashi S, Ebashi F: A new protein component participating in the superprecipitation of myosin B. J Biochem 55: 604–613, 1964

    PubMed  CAS  Google Scholar 

  3. Ebashi S: Calcium ion and muscle contraction. In: K. Maruyama et. al. (eds) Calcium as cell signal. Igaku-shoin Tokyo-New York, 1995, pp 1–11

    Google Scholar 

  4. Ebashi S, Kodama A: A new protein factor promoting aggregation of tropomyosin. J Biochem 58: 107–108, 1963

    Google Scholar 

  5. Ebashi S, Kodama A, Ebashi F: Troponin I. Preparation and physio logical function. J Biochem 64: 465–477, 1968

    CAS  Google Scholar 

  6. Ohtsuki I, Masaki T, Nonomura Y, Ebashi S: Periodic distribution of troponin along the thin filament. J Biochem 61: 817–819, 1967

    CAS  Google Scholar 

  7. Ohtsuki I: Localization of troponin in thin filament and tropomyosin paracrystal. J Biochem 75: 753–765, 1974

    CAS  Google Scholar 

  8. Ebashi S, Endo M, Ohtsuki I: Control of muscle contraction. Q Rev Biophys 2: 351–384, 1969

    Article  PubMed  CAS  Google Scholar 

  9. Hartshörne DJ, Mueller H: Fractionation of troponin into two distinct proteins. Biochem Biophys Res Comm 31: 647–653, 1968

    Article  PubMed  Google Scholar 

  10. Schaub MC, Perry SV: The relaxing protein system of striated muscle: Resolution of the troponin complex into inhibitory and calcium-ion sensitizing factors and their relationship to tropomyosin. Biochem J 115: 993–1004, 1969

    PubMed  CAS  Google Scholar 

  11. Greaser ML, Gergely J: Reconstitution of troponin activity from three protein components. J Biol Chem 246: 4226–4233, 1971

    PubMed  CAS  Google Scholar 

  12. Ebashi S: Separation of troponin into its three components. J Biochem 72: 787–790, 1972

    PubMed  CAS  Google Scholar 

  13. Ohtsuki I, Maruyama K, Ebashi S: Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Adv Prot Chem 38: 1–67, 1986

    Article  CAS  Google Scholar 

  14. Pearlstone JR, Carpenter MR, Johnson P, Smillie LB: Amino acid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin. Proc Natl Acad Sci 73: 1902–1906, 1976

    Article  PubMed  CAS  Google Scholar 

  15. Ohtsuki I: Molecular arrangement of troponin T in the thin filament. J Biochem 86: 491–497, 1979

    PubMed  CAS  Google Scholar 

  16. Ebashi S, Ohtsuki I, Mihashi K: Regulatory proteins of muscle with special reference to troponin. Cold Spring Harbor Symp Quant Biol 37: 215–224, 1973

    Article  CAS  Google Scholar 

  17. Ohtsuki I: Distribution of troponin components in the thin filament studied by immunoelectron microscopy. J Biochem 77: 633–639, 1975

    CAS  Google Scholar 

  18. Tanokura M, Tawada Y, Ohtsuki I: Chymotryptic subfragments of troponin T from rabbit skeletal muscle. I. Determination of the primary structure. J Biochem 91: 1257–1265, 1982

    CAS  Google Scholar 

  19. Tanokura M, Tawada Y, Ono A, Ohtsuki I: Chymotryptic sub fragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C. J Biochem 93: 331–337, 1983

    CAS  Google Scholar 

  20. Jackson P, Amphlett GW, Perry SV: The primary structure of troponin T and the interaction with tropomyosin. Biochem J 151: 85–97, 1975

    PubMed  CAS  Google Scholar 

  21. Nagano K, Miyamoto S, Matsumura M, Ohtsuki I: Possible formation of a triple-stranded coiled-coil region in tropomyosin-troponin T binding complex. J Mol Biol 141: 217–222, 1981

    Article  Google Scholar 

  22. Endo T, Matsumoto K, Hama T, Ohtsuka Y, Katura G, Obinata T: Distinct troponin T genes are expressed in embryonic larval tail striated muscle and adult body wall smooth muscle of ascidian. J Biol Chem 271: 27855–27862, 1996

    Article  PubMed  CAS  Google Scholar 

  23. Ohtsuki I, Shiraishi F, Suenaga N, Miyata T, Tanokura M: A 26K fragment of troponin T from rabbit skeletal muscle. J Biochem 95: 1337–1342, 1984

    PubMed  CAS  Google Scholar 

  24. Ohtsuki I, Yamamoto K, Hashimoto K: Effect of two C-terminal side chymotryptic troponin T subfragments on the Ca2+-sensitivity of superprecipitation and ATPase activities of actomyosin. J Biochem 90: 259–261, 1981

    PubMed  CAS  Google Scholar 

  25. Onoyama Y, Ohtsuki I: Effect of chymotryptic troponin T subfragments on the calcium ion-sensitivity of ATPase and superprecipitation of actomyosin. J Biochem 100: 517–519, 1986

    PubMed  CAS  Google Scholar 

  26. Pan B-S, Gordon AM, Potter JD: Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem 266: 12432–12438, 1991

    PubMed  CAS  Google Scholar 

  27. Wilkinson JM, Moir AJ, Waterfield MD: The expression of multiple forms of troponin T in chicken fast skeletal muscle may result from differential splicing of a single gene. Eur J Biochem 143: 47–56, 1984

    Article  PubMed  CAS  Google Scholar 

  28. Briggs MM, Lin JJ-C, Schachat FH: The extent of amino-terminal heterogeneity in rabbit fast skeletal muscle troponin T. J Muscle Res Cell Mot 8: 1–12, 1987

    Article  CAS  Google Scholar 

  29. Schachat FH, Diamond M, Brandt PW: Effect of different troponin T-tropomyosin combinations thin filament activation. J Mol Biol 198: 551–554, 1987

    Article  PubMed  CAS  Google Scholar 

  30. Tawada Y, Ohara H, Ooi T, Tawada K: Non polymerizable tropomyosin and control of the superprecipitation of actomyosin. J Biochem 78: 65–72, 1975

    PubMed  CAS  Google Scholar 

  31. Hatakenaka M, Ohtsuki I: Effect of removal and reconstitution of troponins C and I on the Ca2+-activated tension development of single glycerinated rabbit skeletal muscle fibers. Eur J Biochem 205: 985–993, 1992

    Article  PubMed  CAS  Google Scholar 

  32. Shiraishi F, Kambara M, Ohtsuki I: Replacement of troponin com ponents in myofibrils. J Biochem 111: 61–65, 1992

    PubMed  CAS  Google Scholar 

  33. Hatakenaka M: The Ca2+-activation profile of rabbit fast skeletal myofibrils is not affected by troponin T isoforms. Biomed Res 17: 95–100, 1996

    CAS  Google Scholar 

  34. Morimoto S, Yanaga F: Troponin T and its fragment devoid of the N-terminal 51 residues from chicken skeletal muscle show the same Ca2+-regulating action in skinned fiber contraction. In preparation.

    Google Scholar 

  35. Suenaga N: Effect of troponin and Troponin T1 on the iodination of tyrosyl residues of α-tropomyosin. Fukuoka Acta Medica 79: 493–496, 1988

    CAS  Google Scholar 

  36. Syska H, Wilkinson JM, Grand RJA, Perry SV: The relationship between biological activity and primary structure of troponin I from white skeletal muscle of rabbit. Biochem J 153: 375–387, 1976

    PubMed  CAS  Google Scholar 

  37. Potter JD, Gergely J: Troponin, tropomyosin, and actin interactions in the Ca2+-regulation of muscle contraction. Biochemistry 13: 2697–2703, 1974

    Article  PubMed  CAS  Google Scholar 

  38. Szent-Györgyi AG, Chantier PD: Control of contraction by calcium binding to myosin. In: A.G. Engel, C. Franzini-Armstrong (eds) Myology. McGraw-Hill, New York, 1994, pp 506–528

    Google Scholar 

  39. Nagano K, Ohtsuki I: Prediction of approximate quaternary structure of troponin complex. Proc Japan Acad 58: 73–77, 1982

    Article  CAS  Google Scholar 

  40. Ohtsuki I, Onoyama Y, Shiraishi F: Electron microscopic study of troponin. J Biochem 103: 913–919, 1988

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ohtsuki, I. (1999). Calcium ion regulation of muscle contraction: The regulatory role of troponin T. In: Imai, S., Ohtsuki, I., Endo, M. (eds) Muscle Physiology and Biochemistry. Molecular and Cellular Biochemistry, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5543-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5543-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7534-0

  • Online ISBN: 978-1-4615-5543-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics