Skip to main content

Chemical modification of an arginine residue in the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum by phenylglyoxal

  • Chapter
Muscle Physiology and Biochemistry

Part of the book series: Molecular and Cellular Biochemistry ((DMCB,volume 31))

  • 285 Accesses

Abstract

Phenylglyoxal (PGO) was used as a reagent for chemical modification of the ATP-binding site of Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum (SR-ATPase). When 1 mM PGO was reacted with SR-ATPase at 30°C at pH 8.5, PGO was bound to the ATPase molecule in two-to-one stoichiometry with concomitant loss of activity of the ATPase to form the phosphorylated intermediate (E-P). ATP and ADP prevented the binding of PGO and thereby protected the enzyme from inactivation. The SR membranes were labeled with [14C]PGO and then digested with pepsin to identify the attachment site of PGO. A 14C-labeled peptide (402lle-Arg*-Ser-Gly-Gln406) was purified to homogeneity by C18-reversed phase HPLC (Arg* denotes the binding site of [14C]PGO). These results indicate that Arg403 is located in the ATP binding site of the SR-ATPase. (Mol Cell Biochem 190: 169–177, 1999)

*

Dedicated to Dr. Setsuro Ebashi who pioneered the field of Ca2+-mediated regulation of physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inesi G, Lewis D, Nikic D, Hussain A, Kirtley ME: Long-range intramolecular linked function in the calcium transport ATPase. Adv Enzymol Mol Biol65: 185–215, 1992

    Google Scholar 

  2. Ebashi S: Calcium binding and relaxation in the actomyosin system. J Biochem 48: 150–151, 1960

    CAS  Google Scholar 

  3. Ebashi S, Lipmann F: Adenosine triphosphatase-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14: 389–400, 1962

    Article  PubMed  CAS  Google Scholar 

  4. Ebashi S, Endo M: Calcium and muscle contraction. Prog Biophys Mol Biol 18: 123–183, 1968

    Article  PubMed  CAS  Google Scholar 

  5. Ebashi S: Relaxing factor, sarcoplasmic reticulum and troponin —A his torical survey— In: S. Fleischer, Y. Tonomura (eds). Structure and Function of Sarcoplasmic Reticulum. Academic Press, Orlando, 1985, pp 1–18.

    Google Scholar 

  6. Kawakita M, Yasuoka K, Kaziro Y: Selective modification of functionally distinct sulfhydryl groups of sarcoplasmic reticulum Ca2+, Mg2+-adeno-sine triphosphatase with N-ethylmaleimide. J Biochem 87: 609–617, 1980

    PubMed  CAS  Google Scholar 

  7. Kawakita M, Yasuoka-Yabe K, Saito K, Imamura Y: Conformational changes of Ca2+, Mg2+-adenosinetriphosphatase as detected by sitespecifically introduced fluorescent and paramagnetic probes and by susceptibility to tryptic digestion. In: S. Fleischer, Y. Tonomura (eds). Structure and Function of Sarcoplasmic Reticulum. Academic Press, Orlando, 1985, pp 63–89

    Google Scholar 

  8. Kawakita M, Imamura Y, Yamamoto H, Suzuki S, Kawato S: Structural basis for the molecular mechanisms of the calcium-transportingATPase of the sarcoplasmic reticulum. In Y. Mukohata (ed). New Era of Bioenergetics. Academic Press, Tokyo, 1991, pp 47–72

    Google Scholar 

  9. Yasuoka-Yabe K, Tsuji A, Kawakita M: Studies on conformational transitions of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. II. Conformational characteristics of stabilized reaction intermediates as revealed by fluorescent and paramagnetic probes. J Biochem 94: 677–688, 1

    CAS  Google Scholar 

  10. Saito-Nakatsuka K, Yamashita T, Kubota I, Kawakita M: Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. I. Location of a group which is most reactive with N-ethylmaleimide. J Biochem 101: 365–376, 1987

    CAS  Google Scholar 

  11. Imamura Y, Kawakita M: Purification of limited tryptic fragments of Ca2+], Mg2+-adenosine triphosphatase of the sarcoplasmic reticulum and identification of conformation-sensitive cleavage sites. J Biochem 105: 775–781, 1989

    PubMed  CAS  Google Scholar 

  12. Yamamoto H, Imamura Y, Tagaya, M, Fukui T, Kawakita M: Ca2+]-dependent conformational change of the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosine triphospho-pyridoxal. J Biochem 106: 1121–1125, 1989

    PubMed  CAS  Google Scholar 

  13. Imamura Y, Kawakita M: Location of the Ca2+-transport site of Ca2+-transporting ATPase of the sarcoplasmic reticulum as determined by analysis of paramagnetic interaction between Gd3+ ions bound at the transport site and membrane-embedded nitroxide spin probes. J Biochem 110: 220–225, 1991

    PubMed  CAS  Google Scholar 

  14. Suzuki T, Kawakita M: Sites of labeling with N-(3-pyrene)maleimide on Ca2+]-transporting ATPase of the sarcoplasmic reticulum. J Biochem 117: 881–887, 1995

    PubMed  CAS  Google Scholar 

  15. Brandi W, Green NM, Korczak B, MacLennan DH: Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences. Cell 44: 597–607, 1986

    Article  CAS  Google Scholar 

  16. Toyoshima C, Sasabe H, Stokes DL: Three dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362: 469–471, 1993

    Article  Google Scholar 

  17. Bastide F, Meissner G, Fleischer S, Post RL: Similarity of the active site of phosphorylation of the adenosine triphosphatase from transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle. J Biol Chem 248: 8385–8391, 1973

    PubMed  CAS  Google Scholar 

  18. Yamasaki K, Daiho T, Kanazawa T: 3′-O-(5-fluoro-2,4-dinitrophenyl)-ATP exclusively labels Lys-492 at the active site of the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 269: 4129–4134, 1994

    PubMed  CAS  Google Scholar 

  19. Yamagata K, Daiho T, Kanazawa T: Labeling of lysine 492 with pyridoxal 5′-phosphate in the sarcoplasmic reticulum Ca2+-ATPase. Lysine 492 residue is located outside the fluorescein 5-isothiocyanate-binding region in or near the ATP binding site. J Biol Chem 268: 20930–20936, 1993

    PubMed  CAS  Google Scholar 

  20. Mcintosh DB, Woolley DG, Berman MC: 2′,3′-O-(2,4,6-trinitrophenyl)-8-azido-AMP and-ATP photolabel Lys492 at the active site of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 267: 5301–5309, 1992

    PubMed  CAS  Google Scholar 

  21. Mitchinson C, Wilderspin AF, Trinnaman BJ, Green NM: Identification of a labelled peptide after stoichiometric reaction of fluorescein isothiocyanate with the Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum. FEBS Lett 146: 87–92, 1982

    Article  PubMed  CAS  Google Scholar 

  22. Pick U, Bassilian S: Modification of the ATP binding site of the Ca2+-ATPase from sarcoplasmic reticulum by fluorescein isothiocyanate. FEBS Lett 123: 127–130, 1981

    Article  PubMed  CAS  Google Scholar 

  23. Lacapere J-J, Garin J, Trinnaman B, Green NM: Identification of amino acid residues photolabeled with 8-azidoadenosine 5′-diphosphate in the catalytic site of sarcoplasmic reticulum Ca-ATPase. Biochemistry 32: 3414–3421, 1993

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto H, Tagaya M, Fukui T, Kawakita M: Affinity labeling of the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum by adenosine triphosphopyridoxal: Identification of the reactive lysyl residue. J Biochem 103: 452–457, 1988

    PubMed  CAS  Google Scholar 

  25. Vilsen B, Andersen JP, Maclennan DH: Functional consequences of alterations to amino acids located in the hinge domain of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 266: 16157–16164, 1991

    PubMed  CAS  Google Scholar 

  26. Mcintosh DB: Glutaraldehyde cross-links Lys-492 and Arg-678 at the active site of sarcoplasmic reticulum Ca2+]-ATPase. J Biol Chem 267: 22328–22335, 1992

    PubMed  CAS  Google Scholar 

  27. Murphy AJ: Arginyl residue modification of the sarcoplasmic reticulum ATPase protein. Biochem Biophys Res Commun 70: 1048–1054, 1976

    Article  PubMed  CAS  Google Scholar 

  28. Corbalan-Garcia S, Teruel JA, Gomez-Fernandez JC: Chemical mod ification of Ca2+-ATPase from sarcoplasmic reticulum with phenyl-glyoxal. Biochem Soc Trans 22: 381S, 1994

    PubMed  CAS  Google Scholar 

  29. Takahashi K: The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem 243: 6171–6179, 1968

    PubMed  CAS  Google Scholar 

  30. Wakabayashi S, Imagawa T, Shigekawa M: Does fluorescence of 4-nitrobenzo-2-oxa-l,3-diazole incorporated into sarcoplasmic reticulum ATPase monitor putative E1-E2 conformational transition?. J Biochem 107: 563–571, 1990

    PubMed  CAS  Google Scholar 

  31. Heinrikson RL, Meredith SC: Amino acid analysis by reverse-phase high performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate. Anal Biochem 136: 65–74, 1984

    Article  PubMed  CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  33. Yasuoka K, Kawakita M, Kaziro Y: Interaction of adenosine-5#x2019;-O-(3 thiotriphosphate) with Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. J Biochem 91: 1629–1637, 1982

    PubMed  CAS  Google Scholar 

  34. Kanazawa T, Boyer PD: Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles. J Biol Chem 248: 3163–3171, 1983

    Google Scholar 

  35. Suzuki T, Kawakita M: Uncoupling of ATP Splitting from Ca2+-transport in Ca2+-transporting ATPase of the sarcoplasmic reticulum as a result of modification by N-(3-pyrene)maleimide: Activation of a channel with a specificity for alkaline earth metal ions. J Biochem 114: 203–209, 1993

    PubMed  CAS  Google Scholar 

  36. Shoshan-Barmatz: Chemical modification of sarcoplasmic reticulum. Biochem J 240: 509–517, 1986

    PubMed  CAS  Google Scholar 

  37. Mohan PM, Basu A, Basu S, Abraham KI, Modak MJ: DNA binding domain of Escherichia coli DNA polymerase I: Identification of arginine-841 as an essential residue. Biochemistry 27: 226–233, 1988

    Article  PubMed  CAS  Google Scholar 

  38. Bond MW, Chiu NY, Cooperman BS: Identification of an arginine important for enzymatic activity within the covalent structure of yeast inorganic pyrophosphatase. Biochemistry 19: 94–102, 1980

    Article  PubMed  CAS  Google Scholar 

  39. Konishi K, Fujioka M: Chemical modification of a functional arginine residue of rat liver glycine methyltransferase. Biochemistry 26: 8496–8502, 1987

    Article  PubMed  CAS  Google Scholar 

  40. Raess BU, Record DM, Tunnicliff G: Interaction of phenylglyoxal with the human erythrocyte Ca2+ + Mg2+-ATPase. Evidence for the presence of an essential arginyl residue. Mol Pharmacol 27: 444–450, 1985

    CAS  Google Scholar 

  41. Kasher JS, Alien KE, Kasamo K, Slayman CW: Characterization of an essential arginine residue in the plasma membrane H+-ATPase of Neurospora crassa. JBiolChem 261: 10808–10813, 1986

    CAS  Google Scholar 

  42. Viale AM, Vallejos RH: Identification of an essential arginine residue in the beta subunit of the chloroplast ATPase. J Biol Chem 260: 4958–4962, 1985

    PubMed  CAS  Google Scholar 

  43. Werber MM, Sokolovsky M: Proceedings: Carboxypeptidase B: Modification of functional arginyl residues. Israel J Med Sci 11: 1169–1170, 1975

    PubMed  CAS  Google Scholar 

  44. Shoshan-Barmatz V: Stimulation of Ca2+ efflux from sarcoplasmic reticulum by preincubation with ATP and inorganic phosphate. Biochem J 247: 497–504, 1987

    PubMed  CAS  Google Scholar 

  45. Campbell KP, MacLennan DH: Labeling of high affinity ATP binding sites on the 53,000-and 160,000-dalton glycoproteins of the sar coplasmic reticulum with the photoaffinity probe 8-N3-[α-32P]ATP. J Biol Chem258: 1391–1394, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yamamoto, H., Kawakita, M. (1999). Chemical modification of an arginine residue in the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum by phenylglyoxal. In: Imai, S., Ohtsuki, I., Endo, M. (eds) Muscle Physiology and Biochemistry. Molecular and Cellular Biochemistry, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5543-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5543-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7534-0

  • Online ISBN: 978-1-4615-5543-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics